[go: up one dir, main page]

login
Search: a078604 -id:a078604
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the integer whose decimal digits are the first n+1 decimal digits of Pi.
+10
54
3, 31, 314, 3141, 31415, 314159, 3141592, 31415926, 314159265, 3141592653, 31415926535, 314159265358, 3141592653589, 31415926535897, 314159265358979, 3141592653589793, 31415926535897932, 314159265358979323, 3141592653589793238, 31415926535897932384
OFFSET
0,1
COMMENTS
Number of collisions occurring in a system consisting of an infinitely massive, rigid wall at the origin, a ball with mass m stationary at position x1 > 0, and a ball with mass (10^2n)m at position x2 > x1 and rolling toward the origin, assuming perfectly elastic collisions and no friction. - Richard Holmes, Jun 17 2021
Wolfgang Haken (1977) conjectured that no term of this sequence is a perfect square, and estimated the probability that this conjecture is false to be smaller than 10^-9. - Paolo Xausa, Jul 15 2023
REFERENCES
Martin Gardner, Fractal Music, Hypercards and More: Mathematical Recreations from Scientific American Magazine, W. H. Freemand and Company, New York, NY, 1992, pp. 274-275.
LINKS
G. Galperin, Playing pool with π (the number π from a billiard point of view), Regular and Chaotic Dynamics, 8 (2003), 375-394.
Wolfgang Haken, An attempt to understand the four color problem, in Journal of Graph Theory, Vol. 1, Issue 3, 1977, pp. 193-206.
G. Sanderson, Why do colliding blocks compute pi?, a 3Blue1Brown YouTube video, Jan 20 2019.
FORMULA
a(n) = floor(Pi*10^n).
MATHEMATICA
s=RealDigits[Pi, 10, 30][[1]]; Table[FromDigits[Take[s, n]], {n, Length[s]}]
(* Or: *)
a[n_] := IntegerPart[Pi*10^n]; Table[a[n], {n, 0, 9}] (* Peter Luschny, Mar 15 2024 *)
PROG
(PARI) A011545(n)={localprec(n+3); Pi\10^-n} \\ M. F. Hasler, Mar 15 2024
CROSSREFS
KEYWORD
nonn,base
EXTENSIONS
Definition corrected by M. F. Hasler, Mar 15 2024
STATUS
approved
Smallest prime factor of floor(Pi*10^n).
+10
5
3, 31, 2, 3, 5, 314159, 2, 2, 3, 3, 5, 2, 13, 163, 43, 13, 2, 317213509, 2, 2, 2, 2, 2, 2, 83, 41, 2, 3, 2, 3, 3, 5, 2, 2, 2, 2, 2, 31415926535897932384626433832795028841, 13, 59, 3, 2, 3, 3, 3, 3, 3, 31, 3, 1657, 2, 3, 2, 2, 2, 29, 13, 2, 3, 2
OFFSET
0,1
LINKS
Ryan Moore, Table of n, a(n) for n = 0..100 (first 60 terms from Ray Chandler)
FORMULA
a(n) = A020639(A011545(n)).
a(n) is prime (<=> in A000040) iff n+1 is in A060421. - M. F. Hasler, Mar 15 2024
EXAMPLE
n = 10: floor(Pi*10^10) = 31415926535 = 5*7*31*28954771: a(10) = 5.
MATHEMATICA
a[n_] := FactorInteger[IntegerPart[Pi*10^n]][[1, 1]];
Table[a[n], {n, 0, 59}] (* Peter Luschny, Mar 15 2024 *)
PROG
(PARI) a(n) = factor(floor(Pi*10^n))[1, 1]; \\ Michel Marcus, Dec 28 2013
(PARI) A089281(n)={localprec(n+3); factor(Pi\10^-n)[1, 1]} \\ M. F. Hasler, Mar 15 2024
CROSSREFS
Cf. A078604, A000796 (decimals of Pi), A020639 (smallest prime fector), A011545 (numbers made from inital digits of Pi), A060421 (1 + indices of primes in this sequence).
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 30 2003
EXTENSIONS
More terms from Ray Chandler, Oct 30 2003
More terms from Ryan Moore, Dec 27 2013
STATUS
approved

Search completed in 0.005 seconds