[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a070971 -id:a070971
Displaying 1-4 of 4 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A076365 Duplicate of A070971. +20
0
3, 4, 15, 6, 105, 30, 1155, 770, 36465, 210, 15015, 6006 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
KEYWORD
dead
STATUS
approved
A048669 The Jacobsthal function g(n): maximal gap in a list of all the integers relatively prime to n. +10
17
1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 4, 2, 4, 3, 4, 2, 4, 2, 4, 2, 4, 2, 6, 2, 2, 3, 4, 3, 4, 2, 4, 3, 4, 2, 6, 2, 4, 3, 4, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 4, 2, 6, 2, 4, 3, 2, 3, 6, 2, 4, 3, 6, 2, 4, 2, 4, 3, 4, 3, 6, 2, 4, 2, 4, 2, 6, 3, 4, 3, 4, 2, 6, 3, 4, 3, 4, 3, 4, 2, 4, 3, 4, 2, 6, 2, 4, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Equivalently, g(n) is the least integer such that among any g(n) consecutive integers i, i+1, ..., i+g(n)-1 there is at least one which is relatively prime to n.
The definition refers to all integers, not just those in the range 1..n-1.
Differs from A070194 by 1 at the primes. - T. D. Noe, Mar 21 2007
Jacobsthal's function is used in the proofs of Recamán's and Pomerance's conjectures on P-integers--see A192224. - Jonathan Sondow, Jun 14 2014
REFERENCES
E. Jacobsthal, Uber Sequenzen ganzer Zahlen, von denen keine zu n teilerfremd ist, I, II, III. Norske Vid. Selsk. Forh., 33, 1960, 117-139.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Pages 33-34.
E. Westzynthius, Uber die Verteilung der Zahlen, die zu der n ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Helsingfors 25 (1931), 1-37.
LINKS
Fintan Costello, and Paul Watts, A short note on Jacobsthal's function, arXiv preprint arXiv:1306.1064 [math.NT], 2013.
H. Iwaniec, On the problem of Jacobsthal, Demonstratio Math. 11 (1978), pp. 225-231.
Hans-Joachim Kanold, Über eine zahlentheoretische Funktion von Jacobsthal, Mathematische Annalen 170.4 (1967): 314-326.
Gerhard R. Paseman, Updating an upper bound of Erik Westzynthius, arXiv preprint arXiv:1311.5944 [math.NT], 2013-2014.
Carl Pomerance, A note on the least prime in an arithmetic progression, Journal of Number Theory 12.2 (1980): 218-223.
Harlan Stevens, On Jacobsthal's g(n)-function, Mathematische Annalen 226.1 (1977): 95-97.
Mario Ziller, John F. Morack, Algorithmic concepts for the computation of Jacobsthal's function, arXiv:1611.03310 [math.NT], 2016.
FORMULA
From N. J. A. Sloane, Apr 19 2017 (Start):
g(n) = g(Rad(n)) (cf. A007947). So in studying g(n) we may focus on the case when n is a product of w (say) distinct primes.
g(n) <= 2^w for all w [Kanold].
g(n) <= 2^(1/w) for all w >= e^50 [Kanold].
For some unknown X, g(n) <= X*(w*log(w))^2 for all w [Iwaniec].
(End)
g(n) << (log(n))^2, as proved by Iwaniec. - Charles R Greathouse IV, Sep 08 2012.
EXAMPLE
g(6)=4 because the gap between 1 and 5, both being relatively prime to 6, is maximal and 5-1 = 4.
g(7)=2, because the numbers relatively prime to 7 are 1,2,3,4,5,6,8,9,10,..., and the biggest gap is 2. Similarly a(p) = 2 for any prime p. - N. J. A. Sloane, Sep 08 2012
MATHEMATICA
g[n_] := Module[{L = 1, m = 1}, For[k = 2, k <= n+1, k++, If[GCD[k, n] == 1, If[L+m < k, m = k-L]; L = k]]; m]; Table[g[n], {n, 1, 105}] (* Jean-François Alcover, Sep 03 2013, after M. F. Hasler *)
Table[Max[Differences[Select[Range[110], CoprimeQ[#, n]&]]], {n, 110}] (* Harvey P. Dale, Jan 10 2022 *)
PROG
(PARI) A048669(n)=my(L=1, m=1); for(k=2, n+1, gcd(k, n)>1 && next; L+m<k && m=k-L; L=k); m \\ M. F. Hasler, Sep 08 2012
(Haskell)
a048669 n = maximum $ zipWith (-) (tail ts) ts where
ts = a038566_row n ++ [n + 1]
-- Reinhard Zumkeller, Oct 01 2012
CROSSREFS
Essentially same as A049298. See A132468 for another version.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Edited, changed symbol to g(n), added references pertaining to bounds. - N. J. A. Sloane, Apr 19 2017
STATUS
approved
A076366 Number of numbers for which the count of nonprimes (i.e., 1 and composites) in their reduced residue set equals n. +10
4
10, 6, 6, 4, 4, 7, 3, 4, 3, 7, 4, 4, 0, 6, 5, 1, 4, 3, 7, 4, 7, 2, 3, 3, 2, 2, 6, 5, 2, 2, 0, 6, 4, 3, 5, 4, 5, 3, 1, 3, 3, 4, 4, 6, 2, 3, 1, 6, 1, 6, 3, 6, 1, 4, 4, 4, 1, 1, 3, 6, 3, 2, 4, 4, 1, 1, 2, 4, 6, 0, 3, 4, 3, 5, 4, 1, 2, 8, 2, 5, 6, 2, 2, 5, 1, 4, 2, 4, 7, 2, 1, 2, 6, 1, 3, 5, 2, 3, 5, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
a(n) = Card{x; A048864(x) = n}; a(n)=0 if supposedly no such number exists (see A072023).
EXAMPLE
A048864(x) = 13: S = {}, a(13) = 0;
A048864(x) = 16: S = {144}, a(16) = 1;
A048864(x) = 22: S = {57,92}, a(22) = 2;
A048864(x) = 7: S = {13,34,50}, a(7) = 3;
A048864(x) = 4: S = {15,22,54,84}, a(4) = 4;
A048864(x) = 15: S = {35,64,68,156,240}, a(15) = 5;
A048864(x) = 2: S = {5,10,14,20,42,60}, a(2) = 6;
A048864(x) = 6: S = {11,21,32,40,72,78,210}, a(6) = 7;
A048864(x) = 78: S = {133,177,268,440,490,552,870,990}, a(78) = 8;
A048864(x) = 1: S = {1,2,3,4,6,8,12,18,24,30}, a(1) = 10; See A048597.
PROG
(PARI) listn(nn) = {my(v = vector(10^5, n, eulerphi(n) - (primepi(n) - omega(n)))); vector(nn, k, if (#(w=Vec(select(x->(x==k), v, 1))) == 0, 0, #w)); } \\ Michel Marcus, Feb 23 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 10 2002
STATUS
approved
A128759 Least k such that the Jacobsthal function A048669(k) = n. +10
1
1, 2, 15, 6, 105, 30, 1155, 770, 36465, 210, 15015, 6006, 255255, 2310, 8580495, 102102, 4849845, 72930, 20056049013, 74364290, 5898837945, 30030, 3234846615, 881790, 195282582495, 510510, 218257003965, 20281170, 100280245065, 17160990, 934482952262145, 6614136163635 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Except for a(1) and a(2), the same as A070971. It appears that a(2n)=2a(n) for odd n. Because the primorial numbers (A002110) yield record values of the Jacobsthal function, we have a(A048670(n))=A002110(n). Note that numbers in this sequence up to n=18 have the form p#, p#/2, p#/q, or p#/(2q), where p and q are primes with 2<q<p and p# denotes the product of the primes up to p.
LINKS
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 28 2007
EXTENSIONS
a(19) onwards from Don Reble, Oct 17 2013
STATUS
approved
page 1

Search completed in 0.005 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 1 03:07 EDT 2024. Contains 375575 sequences. (Running on oeis4.)