[go: up one dir, main page]

login
Search: a066213 -id:a066213
     Sort: relevance | references | number | modified | created      Format: long | short | data
Nonsquare numbers which are sums of squares of some subset of divisors.
+10
4
20, 30, 80, 90, 120, 126, 130, 150, 180, 195, 210, 252, 264, 270, 272, 280, 294, 300, 315, 320, 330, 336, 350, 360, 378, 390, 396, 414, 420, 450, 468, 480, 500, 504, 520, 525, 540, 600, 630, 650, 660, 690, 693, 696, 700, 720, 750, 756, 780, 792
OFFSET
1,1
LINKS
Robert Israel and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 2667 terms from Israel)
EXAMPLE
20 is in the list since 20 = 2^2 + 4^2 and 2 and 4 are divisors of 20
MAPLE
N:= 10000; # to get entries up to N
filter:= proc(t)
local L;
L:= select(d -> (d^2<t), numtheory[divisors](t));
evalb(coeff(mul(1+x^(d^2), d=L), x, t) <> 0);
end proc;
A066214:= select(filter, [$2..N]); # Robert Israel, Apr 17 2014
MATHEMATICA
filterQ[n_] := If[IntegerQ[Sqrt[n]], False, Module[{L}, L = Select[ Divisors[n], #<n&]; SeriesCoefficient[Product[1+x^(d^2), {d, L}], {x, 0, n}] != 0]];
Select[Range[1000], filterQ] (* Jean-François Alcover, Jun 07 2020, after Maple *)
okQ[k_] := AnyTrue[Subsets[Select[Divisors[k]^2, # <= k&]], Total[#]==k&];
Reap[For[k = 1, k <= 1000, k++, If[!IntegerQ[k^(1/2)] && okQ[k], Sow[k]]]][[2, 1]] (* Jean-François Alcover, May 27 2024 *)
PROG
(PARI) is(n)=if(issquare(n), return(0)); my(d=divisors(n), v=[0], t); d=apply(sqr, select(k->k^2<n, d)); t=vecsum(d); if(t<n, return(0)); forstep(i=#d, 1, -1, v=concat(apply(k->k+d[i], v), v); t-=d[i]; v=Set(select(k->k<=n && k+t>=n, v)); if(setsearch(v, n), return(1))); 0 \\ Charles R Greathouse IV, Aug 28 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Erich Friedman, Dec 17 2001
STATUS
approved
Numbers which are sums of cubes of some subset of divisors.
+10
4
1, 8, 27, 36, 64, 72, 125, 216, 252, 288, 343, 378, 512, 520, 576, 584, 729, 738, 756, 792, 828, 855, 954, 972, 1000, 1044, 1331, 1350, 1440, 1520, 1540, 1728, 1764, 1800, 1890, 1944, 1980, 2016, 2070, 2160, 2197, 2304, 2352, 2376, 2400, 2484, 2520, 2548
OFFSET
1,2
COMMENTS
There are cubes that have not a single, trivial representation but more than one. These start with 27000 =+8^3+9^3+10^3+12^3+15^3+18^3+24^3 =+1^3+2^3+4^3+6^3+8^3+10^3+15^3+20^3+24^3 = +2^3+4^3+9^3+10^3+15^3+20^3+24^3 =+1^3+2^3+4^3+12^3+15^3+20^3+24^3 =+2^3+3^3+4^3+5^3+6^3+12^3+15^3+18^3+25^3 =+1^3+4^3+5^3+6^3+8^3+9^3+12^3+20^3+25^3 =+15^3+20^3+25^3 = +1^3+3^3+6^3+8^3+9^3+18^3+27^3 =+30^3 and 46656 =+1^3+2^3+3^3+6^3+8^3+9^3+12^3+16^3+18^3+24^3+27^3 =+4^3+24^3+32^3 =+36^3 and 74088 =+2^3+6^3+7^3+8^3+9^3+12^3+18^3+21^3+24^3+27^3+28^3 =+4^3+6^3+8^3+14^3+18^3+21^3+24^3+27^3+28^3 =+42^3. - R. J. Mathar, Jan 21 2024
If m is in the sequence then so is m*k^3 for k >= 1. - David A. Corneth, Jan 21 2024
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10286 (first 649 terms from R. J. Mathar)
EXAMPLE
72 is in the list since 72 = 2^3 + 4^3 and 2 and 4 are divisors of 72
MATHEMATICA
okQ[k_] := AnyTrue[Subsets[Select[Divisors[k]^3, # <= k&]], Total[#]==k&];
Reap[For[k = 1, k <= 10000, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, May 27 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Erich Friedman, Dec 17 2001
STATUS
approved
Noncube numbers which are sums of cubes of some subset of divisors.
+10
4
36, 72, 252, 288, 378, 520, 576, 584, 738, 756, 792, 828, 855, 954, 972, 1044, 1350, 1440, 1520, 1540, 1764, 1800, 1890, 1944, 1980, 2016, 2070, 2160, 2304, 2352, 2376, 2400, 2484, 2520, 2548, 2556, 2700, 2772, 2808, 2820, 2870, 2880, 3024, 3220, 3240
OFFSET
1,1
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..1600
EXAMPLE
72 is in the list since 72 = 2^3 + 4^3 and 2 and 4 are divisors of 72
MATHEMATICA
okQ[k_] := AnyTrue[Subsets[Select[Divisors[k]^3, # <= k&]], Total[#]==k&];
Reap[For[k = 1, k <= 100000, k++, If[!IntegerQ[k^(1/3)] && okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, May 27 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Erich Friedman, Dec 17 2001
STATUS
approved

Search completed in 0.010 seconds