[go: up one dir, main page]

login
Search: a065925 -id:a065925
     Sort: relevance | references | number | modified | created      Format: long | short | data
Index values for new maxima in A065925.
+20
3
1, 3, 5, 21, 25, 35, 55, 185, 265, 563, 569, 733, 3350, 3469, 6010, 6779, 10689, 11143, 14505, 18016, 30561, 31588, 37757, 59611, 65816, 67106, 75904, 118361, 214379, 241564, 255196, 414221, 648152, 703812, 881848, 1153107, 1277048, 1407769, 1719552, 1775846, 2722607, 3177728
OFFSET
1,2
REFERENCES
J. Earls, Mathematical Bliss, Pleroma Publications, 2009, pages 99-100. ASIN: B002ACVZ6O [From Jason Earls, Nov 26 2009]
PROG
(PARI) sopf(n) = local(fac, i); fac=factor(n); sum(i=1, matsize(fac)[1], fac[i, 1])
A065926(m)= {local(a, n, k); a=0; for(k=1, m, n=1; while(sopf(n)!=sopf(n+k), n++); if(n>a, a=n; print1(k, ", ")))} \\ Klaus Brockhaus
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Nov 28 2001
EXTENSIONS
More terms from David Wasserman, Sep 19 2002
More terms from Sean A. Irvine, Sep 20 2023
STATUS
approved
Records in A065925.
+20
3
5, 7, 114, 209, 493, 516, 855, 1194, 1274, 2815, 2834, 3180, 3186, 5225, 6010, 8056, 8357, 8954, 11439, 13684, 14599, 15748, 17298, 17384, 17784, 20940, 25886, 36223, 36938, 41796, 53725, 64855, 67942, 69167, 72468, 79143, 79516, 86232, 96845, 120708, 125709
OFFSET
1,1
PROG
(PARI) sopf(n) = local(fac, i); fac=factor(n); sum(i=1, matsize(fac)[1], fac[i, 1])
A065927(m)= {local(a, n, k); a=0; for(k=1, m, n=1; while(sopf(n)!=sopf(n+k), n++); if(n>a, a=n; print1(n, ", ")))} // Klaus Brockhaus
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Nov 28 2001
EXTENSIONS
More terms from David Wasserman, Sep 19 2002
More terms from Sean A. Irvine, Sep 21 2023
STATUS
approved
Smallest k such that omega(n+k) = omega(k).
+10
1
2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 4, 3, 2, 2, 3, 2, 5, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 14, 5, 4, 3, 2, 5, 4, 3, 2, 3, 2, 5, 4, 3, 2, 3, 2, 5, 4, 3, 2, 6, 8, 5, 4, 3, 2, 3, 2, 4, 3, 2, 4, 3, 2, 5, 4, 3, 2, 3, 2, 7, 8, 5, 4, 3, 2, 3, 2, 3, 2, 6, 10, 5, 4, 3, 2, 6, 6, 6, 15, 5, 4, 3, 2, 5, 4, 3, 2, 3, 2, 5, 4
OFFSET
1,1
LINKS
PROG
(PARI): ome(m)= {local(k, n); for(k=1, m, n=1; while(omega(n)!=omega(n+k), n++); print1(n, ", "))} ome(200)
(PARI) { for (n=1, 1000, k=1; while(omega(n + k) != omega(k), k++); write("b065569.txt", n, " ", k) ) } \\ Harry J. Smith, Oct 23 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Nov 30 2001
STATUS
approved
Least number k such that sopfr(k) = sopfr(k + n), where sopfr(k) is the integer log of k.
+10
1
5, 10, 7, 20, 7, 14, 20, 40, 13, 14, 21, 28, 14, 40, 19, 33, 11, 26, 56, 28, 49, 42, 115, 56, 35, 28, 31, 57, 11, 38, 50, 66, 63, 11, 17, 52, 11, 112, 42, 51, 22, 98, 11, 84, 57, 35, 52, 95, 138, 13, 33, 56, 22, 62, 77, 114, 61, 22, 39, 76, 44, 13, 91, 57, 70
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 5 because 5 is the least number such that sopfr(5) = sopfr(5 + 1) = 5 .
a(2) = 10 because 10 is the least number such that sopfr(10) = sopfr(10 + 2) = 7 .
MAPLE
with(numtheory):P:=proc(q) local a, b, k, n; for n from 1 to q do for k from 1 to q do
a:=ifactors(k)[2]; b:=ifactors(k+n)[2];
if add(a[k][1]*a[k][2], k=1..nops(a))=add(b[k][1]*b[k][2], k=1..nops(b))
then print(k); break; fi; od; od; end: P(10^9);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Jan 11 2017
STATUS
approved

Search completed in 0.005 seconds