[go: up one dir, main page]

login
Search: a061909 -id:a061909
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A061909(n)^2.
+20
4
0, 1, 4, 9, 100, 121, 144, 169, 400, 441, 484, 900, 961, 10000, 10201, 10404, 10609, 12100, 12321, 12544, 12769, 14400, 14641, 14884, 16900, 40000, 40401, 40804, 44100, 44521, 44944, 48400, 48841, 90000, 90601, 96100, 96721, 1000000, 1002001, 1004004, 1006009
OFFSET
1,3
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 13 2007
STATUS
approved
a(n) = sum of digits of A061909(n).
+20
3
1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 4, 2, 3, 4, 3, 4, 5, 4, 5, 3, 4, 4, 5, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 4, 5, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 5, 3, 4, 5, 4, 5, 6, 5, 4, 5, 2, 3, 4, 3, 4, 5, 4, 5, 6, 3, 4, 5, 4, 5, 5, 6, 4, 5, 6, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 3, 4, 2, 3
OFFSET
1,2
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Jun 13 2007
STATUS
approved
a(n) = A061909(n) with digits reversed.
+20
3
1, 2, 3, 1, 11, 21, 31, 2, 12, 22, 3, 13, 1, 101, 201, 301, 11, 111, 211, 311, 21, 121, 221, 31, 2, 102, 202, 12, 112, 212, 22, 122, 3, 103, 13, 113, 1, 1001, 2001, 3001, 101, 1101, 2101, 3101, 201, 1201, 2201, 301, 1301, 11, 1011, 2011
OFFSET
1,2
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Jun 13 2007
STATUS
approved
Complement of A061909 (skinny numbers).
+20
1
4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
OFFSET
1,1
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Jul 29 2010
STATUS
approved
Partial sums of skinny numbers (A061909).
+20
1
1, 3, 6, 16, 27, 39, 52, 72, 93, 115, 145, 176, 276, 377, 479, 582, 692, 803, 915, 1028, 1148, 1269, 1391, 1521, 1721, 1922, 2124, 2334, 2545, 2757, 2977, 3198, 3498, 3799, 4109, 4420, 5420, 6421, 7423, 8426, 9436, 10447, 11459, 12472, 13492, 14513, 15535
OFFSET
1,2
COMMENTS
The skinny partial sums of skinny numbers begin: a(1) = 1, a(2) = 3. The primes in the sequence begin: a(2) = 3, a(15) = 479, a(15) = 1721, a(38) = 6421, a(52) = 20899. The perfect powers in the sequence begin a(4) = 16 = 2^4, a(5) = 27 = 3^3, a(24) = 1521 = 39^2.
LINKS
EXAMPLE
a(36) = 4420 = 1+2+3+10+11+12+13+20+21+22+30+31+100+101+102+103+110+111+112+113+120+121+122+130+200+201+202+210+211+212+220+221+300+301+310+311
MATHEMATICA
Accumulate[Select[Range[0, 1200], IntegerReverse[#^2]==IntegerReverse[#]^2&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 02 2017 *)
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Jun 17 2007
STATUS
approved
Skinny numbers (A061909) containing no 3's.
+20
1
0, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212, 220, 221, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1100, 1101, 1102, 1110, 1111, 1112, 1120, 1121, 1122, 1200, 1201, 1202, 1210, 1211, 1212
OFFSET
1,3
COMMENTS
a(n) first differs from A007089(n-1) at a(27) = 1000, which does not equal 222 = A007089(26). - Jason Kimberley, Dec 13 2012
KEYWORD
nonn,base,easy
AUTHOR
N. J. A. Sloane, Jul 29 2010
STATUS
approved
Skinny numbers (A061909) containing no 2's.
+20
1
0, 1, 3, 10, 11, 13, 30, 31, 100, 101, 103, 110, 111, 113, 130, 300, 301, 310, 311, 1000, 1001, 1003, 1010, 1011, 1013, 1030, 1031, 1100, 1101, 1103, 1110, 1111, 1113, 1130, 1300, 1301, 3000, 3001, 3010, 3011, 3100, 3101, 3110, 3111, 10000, 10001, 10003, 10010
OFFSET
1,3
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Jul 29 2010
STATUS
approved
Smallest skinny number (A061909) with digit sum n.
+20
1
0, 1, 2, 3, 13, 113, 1113, 11113, 1011113, 101011113, 1101111211, 110101111211, 100110101111211, 10101010101101122, 1011111111100000013, 1010111111111000000022, 111000010111000111111111, 1010110111101110100000011111, 1111111110010101100001100000102
OFFSET
0,3
COMMENTS
The smallest m >= 0 with sum of digits of (m) = n and sum of digits of (m^2) = (sum of digits of (m))^2.
There are infinitely many natural numbers m >= 0 with sum of digits of (m) = n and sum of digits of (m^2) = (sum of digits of (m))^2.
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 0..19
FORMULA
a(n) > 2/9 * 10^(n/2) for n > 4. - Charles R Greathouse IV, Apr 18 2013
MATHEMATICA
DS[n_] := Total[IntegerDigits[n]]; nn = 10; t = Table[0, {nn}]; n = 0; found = 0; While[n++; r = FromDigits[IntegerDigits[n, 4]]; found < nn, If[DS[r]^2 == DS[r^2] && DS[r] <= nn && t[[DS[r]]] == 0, t[[DS[r]]] = r; found++; Print[r]]]; Join[{0}, t] (* T. D. Noe, Apr 18 2013 *)
CROSSREFS
Cf. A061909.
KEYWORD
nonn,base
AUTHOR
Reiner Moewald, Apr 18 2013
EXTENSIONS
a(10) corrected and a(11) added by T. D. Noe, Apr 18 2013
a(12)-a(13) from Donovan Johnson, Apr 19 2013
a(14) from Donovan Johnson, Apr 24 2013
a(15)-a(18) from Hiroaki Yamanouchi, Aug 28 2014
STATUS
approved
Duplicate of A061909.
+20
0
1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 30, 31, 100, 101, 102, 103, 110, 111, 112, 113
OFFSET
0,2
KEYWORD
dead
STATUS
approved
Number of Golomb rulers of length n.
+10
49
1, 1, 3, 3, 5, 7, 13, 15, 27, 25, 45, 59, 89, 103, 163, 187, 281, 313, 469, 533, 835, 873, 1319, 1551, 2093, 2347, 3477, 3881, 5363, 5871, 8267, 9443, 12887, 14069, 19229, 22113, 29359, 32229, 44127, 48659, 64789, 71167, 94625, 105699, 139119, 151145, 199657
OFFSET
1,3
COMMENTS
Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?
Leading entry in row n of triangle in A169940. Also the number of Sidon sets A with min(A) = 0 and max(A) = n. Odd for all n since {0,n} is the only symmetric Golomb ruler, and reversal preserves the Golomb property. Bounded from above by A032020 since the ruler {0 < r_1 < ... < r_t < n} gives rise to a composition of n: (r_1 - 0, r_2 - r_1, ... , n - r_t) with distinct parts. - Tomas Boothby, May 15 2012
Also the number of compositions of n such that every restriction to a subinterval has a different sum. This is a stronger condition than all distinct consecutive subsequences having a different sum (cf. A325676). - Gus Wiseman, May 16 2019
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..99
T. Pham, Enumeration of Golomb Rulers (Master's thesis), San Francisco State U., 2011.
Eric Weisstein's World of Mathematics, Golomb Ruler.
FORMULA
a(n) = A169952(n) - A169952(n-1) for n>1. - Andrew Howroyd, Jul 09 2017
EXAMPLE
For n=2, there is one Golomb Ruler: {0,2}. For n=3, there are three: {0,3}, {0,1,3}, {0,2,3}. - Tomas Boothby, May 15 2012
From Gus Wiseman, May 16 2019: (Start)
The a(1) = 1 through a(8) = 15 compositions such that every restriction to a subinterval has a different sum:
(1) (2) (3) (4) (5) (6) (7) (8)
(12) (13) (14) (15) (16) (17)
(21) (31) (23) (24) (25) (26)
(32) (42) (34) (35)
(41) (51) (43) (53)
(132) (52) (62)
(231) (61) (71)
(124) (125)
(142) (143)
(214) (152)
(241) (215)
(412) (251)
(421) (341)
(512)
(521)
(End)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@ReplaceList[#, {___, s__, ___}:>Plus[s]]&]], {n, 15}] (* Gus Wiseman, May 16 2019 *)
PROG
(Sage)
def A169942(n):
R = QQ['x']
return sum(1 for c in cartesian_product([[0, 1]]*n) if max(R([1] + list(c) + [1])^2) == 2)
[A169942(n) for n in range(1, 8)]
# Tomas Boothby, May 15 2012
CROSSREFS
Related to thickness: A169940-A169954, A061909.
Related to Golomb rulers: A036501, A054578, A143823.
Row sums of A325677.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 01 2010
EXTENSIONS
a(15)-a(30) from Nathaniel Johnston, Nov 12 2011
a(31)-a(50) from Tomas Boothby, May 15 2012
STATUS
approved

Search completed in 0.023 seconds