[go: up one dir, main page]

login
Search: a061316 -id:a061316
     Sort: relevance | references | number | modified | created      Format: long | short | data
4-dimensional analog of centered polygonal numbers: a(n) = n(n+1)*(n^2+n+4)/12.
(Formerly M3865)
+10
16
0, 1, 5, 16, 40, 85, 161, 280, 456, 705, 1045, 1496, 2080, 2821, 3745, 4880, 6256, 7905, 9861, 12160, 14840, 17941, 21505, 25576, 30200, 35425, 41301, 47880, 55216, 63365, 72385, 82336, 93280, 105281, 118405, 132720, 148296, 165205, 183521
OFFSET
0,3
REFERENCES
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Per Alexandersson, Sam Hopkins, and Gjergji Zaimi, Restricted Birkhoff polytopes and Ehrhart period collapse, arXiv:2206.02276 [math.CO], 2022.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
D.-N. Verma, Towards Classifying Finite Point-Set Configurations, 1997, Unpublished. [Scanned copy of annotated version of preprint given to me by the author in 1997. - N. J. A. Sloane, Oct 04 2021]
FORMULA
G.f.: (1+x^2)/(1-x)^5.
a(n) = 2*binomial(n + 2, 4) + binomial(n + 1, 2).
a(n) = A061316(n)/3 = A061315(n, 3) = sqrt(A061318(n)-A061316(n)).
a(0)=0, a(1)=1, a(2)=5, a(3)=16, a(4)=40, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Sep 30 2011
For n>0, a(n) = (A000217(n-1)^2 + A000217(n)^2 + A000217(n+1)^2 - 1)/9. - Richard R. Forberg, Dec 25 2013
Sum_{n>=1} 1/a(n) = 15/4 - tanh(sqrt(15)*Pi/2)*Pi*sqrt(3/5). - Amiram Eldar, Aug 23 2022
E.g.f.: exp(x)*(12 + 48*x + 42*x^2 + 12*x^3 + x^4)/12. - Stefano Spezia, Aug 31 2023
MATHEMATICA
f[n_]:=n^3; lst={}; s=0; Do[s+=(f[n]+f[n+1]+f[n+2]); AppendTo[lst, s/9], {n, 0, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009 *)
Table[2Binomial[n+2, 4]+Binomial[n+1, 2], {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 5, 16, 40}, 40] (* Harvey P. Dale, Sep 30 2011 *)
PROG
(Magma) [n*(n+1)*(n^2+n+4)/12: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=n*(n+1)*(n^2+n+4)/12 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
easy,nonn,nice
EXTENSIONS
More terms from Henry Bottomley, Apr 24 2001
STATUS
approved
Triangular numbers + 1 squared.
+10
6
1, 4, 16, 49, 121, 256, 484, 841, 1369, 2116, 3136, 4489, 6241, 8464, 11236, 14641, 18769, 23716, 29584, 36481, 44521, 53824, 64516, 76729, 90601, 106276, 123904, 143641, 165649, 190096, 217156, 247009, 279841, 315844, 355216, 398161
OFFSET
0,2
COMMENTS
Also number of n X 2 0..1 arrays with rows and columns unimodal (cf. A223620, column 2). - Georg Fischer, Nov 03 2021
FORMULA
a(n) = (A000217(n) + 1)^2.
a(n) = (binomial(2+n,2) - binomial(n,1))^2. - Zerinvary Lajos, May 30 2006, corrected by R. J. Mathar, May 14 2014
a(n) = A000124(n)^2. - Omar E. Pol, Oct 30 2007
a(n) = 1 + A061316(n). Zerinvary Lajos, Apr 25 2008
G.f.: ( -1+x-6*x^2+x^3-x^4 ) / (x-1)^5. - R. J. Mathar, May 14 2014
EXAMPLE
a(5) = (t(5)+1)^2 = 16^2 = 256.
MAPLE
A086601 := proc(n)
(n+2+n^2)^2 /4 ;
end proc:
seq(A086601(n), n=0..20) ; # R. J. Mathar, May 14 2014
MATHEMATICA
(Accumulate[Range[0, 40]]+1)^2 (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 4, 16, 49, 121}, 40] (* Harvey P. Dale, Jan 14 2020 *)
PROG
(PARI) w=vector(40, i, (t(i)+1)^2)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Jul 23 2003
STATUS
approved
Table read by descending antidiagonals where T(n,k) = T(n,k-1) + T(n,k-1)^2/k^2 and T(n,0)=n.
+10
5
0, 0, 1, 0, 2, 2, 0, 3, 6, 3, 0, 4, 15, 12, 4, 0, 5, 40, 48, 20, 5, 0, 6, 140, 304, 120, 30, 6, 0, 7, 924, 6080, 1720, 255, 42, 7, 0, 8, 24640, 1484736, 186620, 7480, 483, 56, 8, 0, 9, 12415040, 61235956672, 1393267596, 3504380, 26404, 840, 72, 9, 0, 10
OFFSET
0,5
COMMENTS
Not always an integer.
FORMULA
T(n, k) = T(n, k-1) + A061315(n, k)^2.
EXAMPLE
The table begins:
0, 0, 0, 0, 0,...
1, 2, 3, 4, 5,...
2, 6, 15, 40, 140,...
3, 12, 48, 304, 6080,...
4, 20, 120, 1720, 186620,...
5, 30, 255, 7480, 3504380,...
6, 42, 483, 26404, 43599605,...
7, 56, 840, 79240, 392515340,...
8, 72, 1368, 209304, 2738219580,...
...
CROSSREFS
Rows include A000004, A000027 and A061322. Columns include A001477, A002378, A061316, A061318 and A061320.
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, Apr 24 2001
STATUS
approved
Column 3 of A061314.
+10
4
0, 4, 40, 304, 1720, 7480, 26404, 79240, 209304, 499140, 1095160, 2242504, 4332640, 7966504, 14036260, 23829040, 39156304, 62512740, 97268904, 147902080, 220270120, 321933304, 462529540, 654208504, 912130600, 1255036900, 1705896504, 2292638040, 3048972304, 4015313320
OFFSET
0,2
FORMULA
a(n) = A061316(n) + A006007(n)^2 = 4*A061319(n).
G.f. -4*x*(1+x+22*x^2+22*x^3+22*x^4+x^5+x^6)/(x-1)^9. - R. J. Mathar, Aug 11 2012
MATHEMATICA
CoefficientList[Series[-4x (1+x+22x^2+22x^3+22x^4+x^5+x^6)/(x-1)^9, {x, 0, 30}], x] (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 4, 40, 304, 1720, 7480, 26404, 79240, 209304}, 30] (* Harvey P. Dale, Jul 04 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Apr 24 2001
EXTENSIONS
a(25)-a(29) from Stefano Spezia, Aug 31 2023
STATUS
approved

Search completed in 0.010 seconds