[go: up one dir, main page]

login
Search: a061300 -id:a061300
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A061300(n+1)/A061300(n).
+20
1
1, 2, 6, 30, 154, 1105, 4788, 20677, 216931, 858925, 7105392, 5546059, 2018025900, 1480452337, 3238556831, 107972737, 18425956230000, 4683032671, 14053747110612300, 160436746661, 33809725025123, 15260431896321667, 1583855315457687090000
OFFSET
0,2
COMMENTS
It is not known if the ratios A061300(n+1)/A061300(n) are always integer, but so far (for the listed terms) they are. - Max Alekseyev, Sep 05 2023
LINKS
EXAMPLE
a(5) = 1105 as A061300(5+1) / A061300(5) = 61261200 / 55440 = 1105.
MATHEMATICA
A061300[n_Integer?NonNegative] := A061300[n] = Module[{fact = n!, num = 1}, Monitor[While[Length@Divisors@num != fact, num++]; num, {n, num}]]; a[n_] := A061300[n + 1]/A061300[n]; Table[a[n], {n, 0, 4}] (* Robert P. P. McKone, Sep 07 2023 *)
CROSSREFS
Cf. A061300.
KEYWORD
nonn,hard
AUTHOR
J. Lowell, Oct 04 2022
EXTENSIONS
a(11)-a(21) from David A. Corneth, Oct 05 2022
a(22)-a(29) from Max Alekseyev, Sep 05 2023
STATUS
approved
Duplicate of A061300.
+20
0
1, 1, 2, 12, 360, 55440, 61261200, 293318625600, 6064949221531200
OFFSET
0,3
KEYWORD
dead
STATUS
approved
Smallest positive integer having the same number of divisors as n.
+10
13
1, 2, 2, 4, 2, 6, 2, 6, 4, 6, 2, 12, 2, 6, 6, 16, 2, 12, 2, 12, 6, 6, 2, 24, 4, 6, 6, 12, 2, 24, 2, 12, 6, 6, 6, 36, 2, 6, 6, 24, 2, 24, 2, 12, 12, 6, 2, 48, 4, 12, 6, 12, 2, 24, 6, 24, 6, 6, 2, 60, 2, 6, 12, 64, 6, 24, 2, 12, 6, 24, 2, 60, 2, 6, 12, 12, 6, 24, 2, 48, 16, 6, 2, 60, 6, 6, 6, 24, 2
OFFSET
1,2
COMMENTS
a(n) <= n for all n. Moreover, a(n) = n if and only if n belongs to A005179 or A007416.
LINKS
FORMULA
a(n) = A005179(A000005(n)).
MATHEMATICA
a140635[n_] := NestWhile[#+1&, 1, DivisorSigma[0, n]!=DivisorSigma[0, #]&]
a140635[{m_, n_}] := Map[a140635, Range[m, n]]
a140635[{1, 89}] (* Hartmut F. W. Hoft, Jun 13 2023 *)
PROG
(PARI) A140635(n) = { my(nd = numdiv(n)); for (i=1, n, if (numdiv(i) == nd, return (i))); }; \\ After A139770, Antti Karttunen, May 27 2017
(Python)
from sympy import divisor_count as d
def a(n):
x=d(n)
m=1
while True:
if d(m)==x: return m
else: m+=1 # Indranil Ghosh, May 27 2017
CROSSREFS
Cf. A019505, A138113, A061300 (sequences that can be defined in terms of this sequence).
KEYWORD
nonn
AUTHOR
Max Alekseyev, May 19 2008
STATUS
approved

Search completed in 0.005 seconds