[go: up one dir, main page]

login
Search: a060008 -id:a060008
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 2*binomial(n,4).
(Formerly N0778)
+10
28
0, 0, 0, 0, 2, 10, 30, 70, 140, 252, 420, 660, 990, 1430, 2002, 2730, 3640, 4760, 6120, 7752, 9690, 11970, 14630, 17710, 21252, 25300, 29900, 35100, 40950, 47502, 54810, 62930, 71920, 81840, 92752, 104720, 117810, 132090, 147630, 164502, 182780
OFFSET
0,5
COMMENTS
Also number of ways to insert two pairs of parentheses into a string of n-4 letters (allowing empty pairs of parentheses). E.g., there are 30 ways for 2 letters. Cf. A002415.
2,10,30,70, ... gives orchard crossing number of complete graph K_n. - Ralf Stephan, Mar 28 2003
If Y is a 2-subset of an n-set X then, for n>=4, a(n-1) is the number of 4-subsets and 5-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Middle column of table on p. 6 of Feder and Garber. - Jonathan Vos Post, Apr 23 2009
Number of pairs of non-intersecting lines when each of n points around a circle is joined to every other point by straight lines. A pair of lines is considered non-intersecting if the lines do not intersect in either the interior or the boundary of a circle. - Melvin Peralta, Feb 05 2016
From a(2), convolution of the oblong numbers (A002378) with the nonnegative numbers (A001477). - Bruno Berselli, Oct 24 2016
Also the number of 3-cycles in the n-triangular honeycomb bishop graph. - Eric W. Weisstein, Aug 10 2017
REFERENCES
Charles Jordan, Calculus of Finite Differences, Chelsea, 1965, p. 449.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
M. Aganagic, A. Klemm and C. Vafa, Disk Instantons, Mirror Symmetry and the Duality Web, arXiv:hep-th/0105045, 2001.
Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
Elie Feder and David Garber, The Orchard crossing number of an abstract graph, arXiv:math/0303317 [math.CO], 2003-2009.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), pp. 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
Eric Weisstein's World of Mathematics, Graph Cycle.
FORMULA
a(n) = A096338(2*n-6) = 2*A000332(n), n>2. - R. J. Mathar, Nov 08 2010
G.f.: 2*x^4/(1-x)^5. - Colin Barker, Feb 29 2012
a(n) = Sum_{k=1..n-3} ( Sum_{i=1..k} i*(2*k-n+4) ). - Wesley Ivan Hurt, Sep 26 2013
E.g.f.: x^4*exp(x)/12. - G. C. Greubel, Feb 23 2017
From Amiram Eldar, Jul 19 2022: (Start)
Sum_{n>=4} 1/a(n) = 2/3.
Sum_{n>=4} (-1)^n/a(n) = 16*log(2) - 32/3. (End)
MAPLE
[seq(binomial(n, 4)*2, n=0..40)]; # Zerinvary Lajos, Jul 18 2006
MATHEMATICA
CoefficientList[Series[2 x^4/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 20 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 2}, 50] (* Harvey P. Dale, Jun 09 2016 *)
Table[2 Binomial[n, 4], {n, 0, 40}] (* Bruno Berselli, Oct 24 2016 *)
2 Binomial[Range[0, 20], 4] (* Eric W. Weisstein, Aug 10 2017 *)
PROG
(Magma) [2*Binomial(n, 4): n in [0..40]]; // Vincenzo Librandi, Oct 20 2013
(PARI) a(n)=2*binomial(n, 4) \\ Charles R Greathouse IV, Jun 23 2015
CROSSREFS
A diagonal of A088617.
Partial sums of A007290.
Cf. A051843 (4-cycles in the triangular honeycomb bishop graph), A290775 (5-cycles), A290779 (6-cycles).
KEYWORD
nonn,easy
STATUS
approved
Triangle of rencontres numbers.
+10
26
1, 2, 3, 9, 8, 6, 44, 45, 20, 10, 265, 264, 135, 40, 15, 1854, 1855, 924, 315, 70, 21, 14833, 14832, 7420, 2464, 630, 112, 28, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 14684570
OFFSET
2,2
COMMENTS
T(n,k) = number of permutations of n elements with k fixed points.
T(n,n-1)=0 and T(n,n)=1 are omitted from the array. - Geoffrey Critzer, Nov 28 2011.
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
Kaufmann, Arnold. "Introduction a la combinatorique en vue des applications." Dunod, Paris, 1968. See p. 92.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
LINKS
FindStat - Combinatorial Statistic Finder, The number of fixed points of a permutation
I. Kaplansky, Symbolic solution of certain problems in permutations, Bull. Amer. Math. Soc., 50 (1944), 906-914.
FORMULA
T(n,k) = binomial(n,k)*A000166(n-k) = A008290(n,k).
E.g.f. for column k: (x^k/k!)(exp(-x)/(1-x)). - Geoffrey Critzer, Nov 28 2011
Row generating polynomials appear to be given by -1 + sum {k = 0..n} (-1)^(n+k)*C(n,k)*(1+k*x)^(n-k)*(2+(k-1)*x)^k. - Peter Bala, Dec 29 2011
EXAMPLE
Triangle begins:
1
2 3
9 8 6
44 45 20 10
265 264 135 40 15
1854 1855 924 315 70 21
14833 14832 7420 2464 630 112 28
133496 133497 66744 22260 5544 1134 168 36
...
MAPLE
T:= proc(n, k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
(T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
end:
seq(seq(T(n, k), k=0..n-2), n=2..12); # Alois P. Heinz, Mar 17 2013
MATHEMATICA
Prepend[Flatten[f[list_]:=Select[list, #>1&]; Map[f, Drop[Transpose[Table[d = Exp[-x]/(1 - x); Range[0, 10]! CoefficientList[Series[d x^k/k!, {x, 0, 10}], x], {k, 0, 8}]], 3]]], 1] (* Geoffrey Critzer, Nov 28 2011 *)
PROG
(PARI) T(n, k)= if(k<0 || k>n, 0, n!/k!*sum(i=0, n-k, (-1)^i/i!))
CROSSREFS
Row sums give A033312.
Cf. A320582.
KEYWORD
nonn,tabl,nice,easy
EXTENSIONS
Comments and more terms from Michael Somos, Apr 26 2000
STATUS
approved
a(n) = n*(n + 1)*(n + 2)*(n + 3)/2.
+10
7
0, 12, 60, 180, 420, 840, 1512, 2520, 3960, 5940, 8580, 12012, 16380, 21840, 28560, 36720, 46512, 58140, 71820, 87780, 106260, 127512, 151800, 179400, 210600, 245700, 285012, 328860, 377580, 431520, 491040, 556512, 628320, 706860, 792540, 885780, 987012
OFFSET
0,2
COMMENTS
a(n) is the area of an irregular quadrilateral with vertices at (1,1), (n+1, n+2), ((n+1)^2, (n+2)^2) and ((n+1)^3, (n+2)^3). - Art Baker, Dec 08 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000 (terms 0..680 from Vincenzo Librandi)
FORMULA
a(n) = 6*A034827(n+3) = 12*A000332(n+3).
G.f.: 12*x/(1 - x)^5. - Colin Barker, Mar 01 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) with a(0) = 0, a(1) = 12, a(2) = 60, a(3) = 180, a(4) = 420. - Harvey P. Dale, Feb 04 2015
E.g.f.: (24*x + 36*x^2 + 12*x^3 + x^4)*exp(x)/2. - Franck Maminirina Ramaharo, Dec 08 2018
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*(3*log(2)-2)/9. (End)
MAPLE
[seq(12*binomial(n+3, 4), n=0..32)]; # Zerinvary Lajos, Nov 24 2006
MATHEMATICA
Table[n*(n + 1)*(n + 2)*(n + 3)/2, {n, 0, 50}] (* David Nacin, Mar 01 2012 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 12, 60, 180, 420}, 40] (* Harvey P. Dale, Feb 04 2015 *)
PROG
(Magma) [n*(n+1)*(n+2)*(n+3)/2: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
(PARI) a(n)=n*(n+1)*(n+2)*(n+3)/2 \\ Charles R Greathouse IV, Oct 07 2015
(GAP) List([0..40], n->n*(n+1)*(n+2)*(n+3)/2); # Muniru A Asiru, Dec 08 2018
(Sage) [12*binomial(n+3, 4) for n in range(40)] # G. C. Greubel, Dec 08 2018
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
Number of permutations of n letters where exactly 5 change position.
+10
3
0, 0, 0, 0, 44, 264, 924, 2464, 5544, 11088, 20328, 34848, 56628, 88088, 132132, 192192, 272272, 376992, 511632, 682176, 895356, 1158696, 1480556, 1870176, 2337720, 2894320, 3552120, 4324320, 5225220, 6270264, 7476084, 8860544
OFFSET
1,5
LINKS
FORMULA
a(n) = 44*C(n, 5). a(n) = a(n-1)*n/(n-5).
G.f.: 44*x^5/(1-x)^6. [Colin Barker, Apr 22 2012]
EXAMPLE
a(8) = a(7) x 8/(8-5) = 924 x 8/3 = 2464
PROG
(PARI) { for (n=1, 1000, if (n>5, a*=n/(n - 5), if (n<5, a=0, a=44)); write("b060836.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 19 2009
CROSSREFS
For changing 0, 1, 2, 3, 4, 5, n-4, n elements see A000012, A000004, A000217 (offset), A007290, A060008, A060836, A000475, A000166. Also see A000332, A008290.
Rencontre sequences are A000166 A000240 A000387 A000449 and A000475.
A diagonal of A008291.
KEYWORD
nonn,easy
AUTHOR
Robert Goodhand (rgoodhand(AT)hotmail.com), May 12 2001
STATUS
approved

Search completed in 0.009 seconds