OFFSET
0,5
COMMENTS
Also number of ways to insert two pairs of parentheses into a string of n-4 letters (allowing empty pairs of parentheses). E.g., there are 30 ways for 2 letters. Cf. A002415.
2,10,30,70, ... gives orchard crossing number of complete graph K_n. - Ralf Stephan, Mar 28 2003
If Y is a 2-subset of an n-set X then, for n>=4, a(n-1) is the number of 4-subsets and 5-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Middle column of table on p. 6 of Feder and Garber. - Jonathan Vos Post, Apr 23 2009
Number of pairs of non-intersecting lines when each of n points around a circle is joined to every other point by straight lines. A pair of lines is considered non-intersecting if the lines do not intersect in either the interior or the boundary of a circle. - Melvin Peralta, Feb 05 2016
From a(2), convolution of the oblong numbers (A002378) with the nonnegative numbers (A001477). - Bruno Berselli, Oct 24 2016
Also the number of 3-cycles in the n-triangular honeycomb bishop graph. - Eric W. Weisstein, Aug 10 2017
REFERENCES
Charles Jordan, Calculus of Finite Differences, Chelsea, 1965, p. 449.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
M. Aganagic, A. Klemm and C. Vafa, Disk Instantons, Mirror Symmetry and the Duality Web, arXiv:hep-th/0105045, 2001.
Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
Elie Feder and David Garber, The Orchard crossing number of an abstract graph, arXiv:math/0303317 [math.CO], 2003-2009.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), pp. 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
Eric Weisstein's World of Mathematics, Graph Cycle.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: 2*x^4/(1-x)^5. - Colin Barker, Feb 29 2012
a(n) = Sum_{k=1..n-3} ( Sum_{i=1..k} i*(2*k-n+4) ). - Wesley Ivan Hurt, Sep 26 2013
E.g.f.: x^4*exp(x)/12. - G. C. Greubel, Feb 23 2017
From Amiram Eldar, Jul 19 2022: (Start)
Sum_{n>=4} 1/a(n) = 2/3.
Sum_{n>=4} (-1)^n/a(n) = 16*log(2) - 32/3. (End)
MAPLE
[seq(binomial(n, 4)*2, n=0..40)]; # Zerinvary Lajos, Jul 18 2006
MATHEMATICA
CoefficientList[Series[2 x^4/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 20 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 2}, 50] (* Harvey P. Dale, Jun 09 2016 *)
Table[2 Binomial[n, 4], {n, 0, 40}] (* Bruno Berselli, Oct 24 2016 *)
2 Binomial[Range[0, 20], 4] (* Eric W. Weisstein, Aug 10 2017 *)
PROG
(Magma) [2*Binomial(n, 4): n in [0..40]]; // Vincenzo Librandi, Oct 20 2013
(PARI) a(n)=2*binomial(n, 4) \\ Charles R Greathouse IV, Jun 23 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved