[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a059777 -id:a059777
Displaying 1-5 of 5 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A006950 G.f.: Product_{k>=1} (1 + x^(2*k - 1)) / (1 - x^(2*k)).
(Formerly M0524)
+10
67
1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 35, 43, 55, 70, 86, 105, 130, 161, 196, 236, 287, 350, 420, 501, 602, 722, 858, 1016, 1206, 1431, 1687, 1981, 2331, 2741, 3206, 3740, 4368, 5096, 5922, 6868, 7967, 9233, 10670, 12306, 14193, 16357, 18803, 21581 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Also the number of partitions of n in which all odd parts are distinct. There is no restriction on the even parts. E.g., a(9)=13 because "9 = 8+1 = 7+2 = 6+3 = 6+2+1 = 5+4 = 5+3+1 = 5+2+2 = 4+4+1 = 4+3+2 = 4+2+2+1 = 3+2+2+2 = 2+2+2+2+1". - Noureddine Chair, Feb 03 2005
Number of partitions of n in which each even part occurs with even multiplicity. There is no restriction on the odd parts.
Also the number of partitions of n into parts not congruent to 2 mod 4. - James A. Sellers, Feb 08 2002
Coincides with the sequence of numbers of nilpotent conjugacy classes in the Lie algebras o(n) of skew-symmetric n X n matrices, n=0,1,2,3,... (the cases n=0,1 being degenerate). This sequence, A015128 and A000041 together cover the nilpotent conjugacy classes in the classical A,B,C,D series of Lie algebras. - Alexander Elashvili, Sep 08 2003
Poincaré series [or Poincare series] (or Molien series) for symmetric invariants in F_2(b_1, b_2, ... b_n) ⊗ E(e_1, e_2, ... e_n) with b_i 2-dimensional, e_i one-dimensional and the permutation action of S_n, in the case n=2.
Equals polcoeff inverse of A010054 with alternate signs. - Gary W. Adamson, Mar 15 2010
It appears that this sequence is related to the generalized hexagonal numbers (A000217) in the same way as the partition numbers A000041 are related to the generalized pentagonal numbers A001318. (See the table in comments section of A195825.) Conjecture: this is 1 together with the row sums of triangle A195836, also column 1 of A195836, also column 2 of the square array A195825. - Omar E. Pol, Oct 09 2011
Since this is also column 2 of A195825 so the sequence contains only one plateau [1, 1, 1] of level 1 and length 3. For more information see A210843. - Omar E. Pol, Jun 27 2012
Convolution of A035363 and A000700. - Vaclav Kotesovec, Aug 17 2015
Also the number of ways to stack n triangles in a valley (pointing upwards or downwards depending on row parity). - Seiichi Manyama, Jul 07 2018
REFERENCES
A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 108.
M. D. Hirschhorn, The Power of q, Springer, 2017. See pod, page 297.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
N. Chair, Partition identities from Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
Luca Ferrari, Schröder partitions, Schröder tableaux and weak poset patterns, arXiv:1606.06624 [math.CO], 2016. Mentions this sequence.
Mircea Merca, New relations for the number of partitions with distinct even parts, Journal of Number Theory 176 (July 2017), 1-12.
Victor S. Miller, Counting Matrices that are Squares, arXiv:1606.09299 [math.GR], 2016.
Maxie D. Schmidt, Exact Formulas for the Generalized Sum-of-Divisors Functions, arXiv:1705.03488 [math.NT], 2017. See Example 4.2 p. 13.
Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010.
L. Wang, New Congruences for Partitions where the Odd Parts are Distinct, J. Int. Seq. 18 (2015) # 15.4.2.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
M. P. Zaletel and R. S. K. Mong, Exact Matrix Product States for Quantum Hall Wave Functions, arXiv preprint arXiv:1208.4862 [cond-mat.str-el], 2012. - From N. J. A. Sloane, Dec 25 2012
FORMULA
a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1)*A002129(k)*a(n-k), n > 1, a(0)=1. - Vladeta Jovovic, Feb 05 2002
G.f.: 1/Sum_{k>=0} (-x)^(k*(k+1)/2). - Vladeta Jovovic, Sep 22 2002 [corrected by Vaclav Kotesovec, Aug 17 2015]
a(n) = A059777(n-1)+A059777(n), n > 0. - Vladeta Jovovic, Sep 22 2002
G.f.: Product_{m>=1} (1+x^m)^(if A001511(m) > 1, A001511(m)-1 else A001511(m)). - Jon Perry, Apr 15 2005
Expansion of 1 / psi(-x) in powers of x where psi() is a Ramanujan theta function.
Expansion of q^(1/8) * eta(q^2) / (eta(q) * eta(q^4)) in powers of q.
Convolution inverse of A106459. - Michael Somos, Nov 02 2005
G.f.: exp( Sum_{n>=1} [Sum_{d|n} (-1)^(n-d)*d] * x^n/n ). - Paul D. Hanna, Jul 22 2009
a(n) ~ (8*n+1) * cosh(sqrt(8*n-1)*Pi/4) / (16*sqrt(2)*n^2) - sinh(sqrt(8*n-1)*Pi/4) / (2*Pi*n^(3/2)) ~ exp(Pi*sqrt(n/2))/(4*sqrt(2)*n) * (1 - (2/Pi + Pi/16)/sqrt(2*n) + (3/16 + Pi^2/1024)/n). - Vaclav Kotesovec, Aug 17 2015, extended Jan 09 2017
Can be computed recursively by Sum_{j>=0} (-1)^(ceiling(j/2)) a(n - j(j+1)/2) = 0, for n > 0. [Merca, Theorem 4.3] - Eric M. Schmidt, Sep 21 2017
a(n) = A000041(n) - A085642(n), for n >= 1. - Wouter Meeussen, Dec 20 2017
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 13*x^9 + ...
G.f. = q^-1 + q^7 + q^15 + 2*q^23 + 3*q^31 + 4*q^39 + 5*q^47 + 7*q^55 + 10*q^63 + ...
From Seiichi Manyama, Jul 07 2018: (Start)
n | the ways to stack n triangles in a valley
--+------------------------------------------------------
1 | *---*
| \ /
| *
|
2 | *
| / \
| *---*
| \ /
| *
|
3 | *---* *---*
| / \ / \ / \
| *---* *---*
| \ / \ /
| * *
|
4 | * *
| / \ / \
| *---* *---*---* *---*
| / \ / \ / \ / \ / \
| *---* *---* *---*
| \ / \ / \ /
| * * *
|
5 | *---* * * *---*
| / \ / / \ / \ \ / \
| *---* *---*---* *---*---* *---*
| / \ / \ / \ / \ / \ / \ / \
| *---* *---* *---* *---*
| \ / \ / \ / \ /
| * * * *
|
6 | *
| / \
| *---* *---* * * *---*
| / \ / / \ / / \ / \ \ / \
| *---* *---*---* *---*---* *---*---*
| / \ / \ / \ / \ / \ / \ / \ /
| *---* *---* *---* *---*
| \ / \ / \ / \ /
| * * * *
| *
| / \
| *---*
| \ / \
| *---*
| \ / \
| *---*
| \ /
| *
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, b(n-i, i-irem(i, 2)))))
end:
a:= n-> b(n, n):
seq(a(n), n=0..50); # Alois P. Heinz, Jan 06 2013
MATHEMATICA
CoefficientList[ Series[ Product[(1 + x^(2k - 1))/(1 - x^(2k)), {k, 25}], {x, 0, 50}], x] (* Robert G. Wilson v, Jun 28 2012 *)
CoefficientList[Series[x*QPochhammer[-1/x, x^2] / ((1+x)*QPochhammer[x^2, x^2]), {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
CoefficientList[Series[2*(-x)^(1/8) / EllipticTheta[2, 0, Sqrt[-x]], {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-Mod[i, 2]]]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 11 2018, after Alois P. Heinz *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, (-1)^(m-d)*d)*x^m/m)+x*O(x^n)), n)} \\ Paul D. Hanna, Jul 22 2009
(GW-BASIC)' A program with two A-numbers (Note that here A000217 are the generalized hexagonal numbers):
10 Dim A000217(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 51: For j = 1 to n
30 If A000217(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A000217(j))
40 Next j: Print a(n-1); : Next n ' Omar E. Pol, Jun 10 2012
CROSSREFS
See also Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cf. A163203.
KEYWORD
nonn
AUTHOR
EXTENSIONS
G.f. and more terms from Vladeta Jovovic, Feb 05 2002
STATUS
approved
A316675 Triangle read by rows: T(n,k) gives the number of ways to stack n triangles in a valley so that the right wall has k triangles for n >= 0 and 0 <= k <= n. +10
7
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 3, 2, 1, 1, 1, 0, 0, 1, 1, 3, 3, 2, 1, 1, 1, 0, 0, 1, 1, 3, 3, 3, 2, 1, 1, 1, 0, 0, 1, 1, 4, 3, 4, 3, 2, 1, 1, 1, 0, 0, 1, 1, 5, 4, 5, 4, 3, 2, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,33
LINKS
Seiichi Manyama, Rows n = 0..50, flattened
FORMULA
For m >= 0,
Sum_{n>=2m} T(n,2m) *x^n = x^(2m) * Product_{j=1..m} (1+x^(2j-1))/(1-x^(2j)).
Sum_{n>=2m+1} T(n,2m+1)*x^n = x^(2m+1) * Product_{j=1..m} (1+x^(2j-1))/(1-x^(2j)).
EXAMPLE
T(8,4) = 3.
* *
/ \ / \
*---* * *---*---* *---*
\ / \ / \ \ / \ / \ / \ / \
*---*---* *---*---* *---*---*
\ / \ / \ / \ / \ / \ /
*---* *---* *---*
\ / \ / \ /
* * *
Triangle begins:
1;
0, 1;
0, 0, 1;
0, 0, 1, 1;
0, 0, 1, 1, 1;
0, 0, 1, 1, 1, 1;
0, 0, 1, 1, 1, 1, 1;
0, 0, 1, 1, 2, 1, 1, 1;
0, 0, 1, 1, 3, 2, 1, 1, 1;
0, 0, 1, 1, 3, 3, 2, 1, 1, 1;
0, 0, 1, 1, 3, 3, 3, 2, 1, 1, 1;
0, 0, 1, 1, 4, 3, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 5, 4, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 5, 5, 6, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 5, 5, 8, 6, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 6, 5, 10, 8, 7, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 7, 6, 11, 10, 10, 7, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 7, 7, 13, 11, 12, 10, 7, 5, 4, 3, 2, 1, 1, 1;
0, 0, 1, 1, 7, 7, 16, 13, 14, 12, 10, 7, 5, 4, 3, 2, 1, 1, 1;
CROSSREFS
Row sums give A006950.
Sums of even columns give A059777.
Cf. A072233.
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 10 2018
STATUS
approved
A207641 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1+x^k)/(1-x^k). +10
4
1, 1, 3, 5, 9, 15, 25, 39, 61, 93, 139, 205, 299, 429, 611, 861, 1201, 1663, 2285, 3115, 4221, 5683, 7605, 10123, 13405, 17661, 23163, 30245, 39323, 50925, 65699, 84445, 108167, 138089, 175719, 222921, 281965, 355627, 447309, 561139, 702133, 876395, 1091301 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In Ramanujan's equation let a = x and b = 1. - Michael Somos, Nov 20 2015
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 370, 9th equation.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..750 from Vaclav Kotesovec)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 1 / ((1 + x) * phi(-x)) in powers of x where phi() is a Ramanujan theta function. - Michael Somos, Nov 20 2015
G.f.: 1 + x*(1+x) * (1 / (1-x)^2 + 2*x^3 / ((1-x)*(1-x^2))^2 + 2*x^7*(1+x) / ((1-x)*(1-x^2)*(1-x^3))^2 + 2*x^12*(1+x)*(1+x^2) / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4))^2 + ...). [Ramanujan] - Michael Somos, Nov 20 2015
a(n) + a(n+1) = A015128(n+1) for n >= 0. - Seiichi Manyama, Jul 12 2018
a(n) ~ exp(Pi*sqrt(n)) / (16*n). - Vaclav Kotesovec, Jun 18 2019
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 9*x^4 + 15*x^5 + 25*x^6 + 39*x^7 +...
such that, by definition,
A(x) = 1 + x*(1+x)/(1-x) + x^2*(1+x)*(1+x^2)/((1-x)*(1-x^2)) + x^3*(1+x)*(1+x^2)*(1+x^3)/((1-x)*(1-x^2)*(1-x^3)) +...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-x}, {}, x, x], {x, 0, n}]; (* Michael Somos, Mar 11 2014 *)
a[ n_] := SeriesCoefficient[ 1 / ((1 + x) EllipticTheta[ 4, 0, x]), {x, 0, n}]; (* Michael Somos, Nov 20 2015 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, (1+x^k)/(1-x^k +x*O(x^n))) ), n)}
for(n=0, 50, print1(a(n), ", "))
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / ((1 + x) * eta(x + A)^2), n))}; /* Michael Somos, Nov 20 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 19 2012
STATUS
approved
A059776 Three-quadrant Ferrers graphs that partition n. +10
3
1, 2, 5, 11, 24, 48, 95, 178, 328, 585, 1025, 1754, 2958, 4897, 8002, 12889, 20523, 32289, 50296, 77550, 118521, 179553, 269881, 402532, 596178, 876942, 1281777, 1862015, 2689405, 3862891, 5519403, 7846393, 11100970, 15632733, 21917280 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(11/2) * n^(3/2)). - Vaclav Kotesovec, Jul 12 2018
MAPLE
t1 := add( (-1)^(j)*q^(j*(j+1)/2)*(1-q^(j+1))/(1-q), j=0..101); t3 := mul((1-q^n)^3, n=1..101); series(t1/t3, q, 101);
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[(-1)^k*x^(k*(k+1)/2)*(1 - x^(k + 1))/(1 - x), {k, 0, nmax}]/Product[(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 21 2001
STATUS
approved
A059778 Expansion of 1 / product((1+q^(2*n+3))/(1-q^(2*n+2)), n=0..inf). +10
1
1, 0, -1, -1, -1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
a(n) = (-1)^n*(t(n)-t(n-1)), n>0, where t(n) = A010054(n) is characteristic function of triangular numbers. - Vladeta Jovovic, Sep 22 2002
REFERENCES
G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
LINKS
CROSSREFS
Cf. A059777.
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Feb 21 2001
STATUS
approved
page 1

Search completed in 0.009 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 00:57 EDT 2024. Contains 375520 sequences. (Running on oeis4.)