[go: up one dir, main page]

login
Search: a057147 -id:a057147
     Sort: relevance | references | number | modified | created      Format: long | short | data
Digital roots of square numbers A000290.
+10
18
1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9
OFFSET
1,2
COMMENTS
Cyclic with a period of nine. Note that (7, 9, 4, 1, 9, 1, 4, 9, 7) is palindromic.
a(n) is also the decimal expansion of 499264730/333333333. - Enrique Pérez Herrero, Jul 28 2009
a(n) is also the digital root of the Wonderful Demlo number A002477(n). - Enrique Pérez Herrero, Dec 20 2009
First comment above by Enrique Pérez Herrero and his formula below together give the following identity: 1+Sum_{n>=2}(1+9*((n^2-1)/9-floor((n^2-1)/9)))/10^(n-1) = 499264730/333333333 = 1.49779419149779419149779419... - Alexander R. Povolotsky, Jun 14 201
LINKS
Eric Weisstein's World of Mathematics, Square Number.
FORMULA
a(n) = 1+9*{(n^2-1)/9} , where the symbol {} means fractional part. - Enrique Pérez Herrero, Dec 20 2009
a(n) = 3(1 + cos(2n*Pi/3) + cos(4n*Pi/3)) + mod(3n^4+3n^6+4n^8,9). - Ant King, Oct 07 2009
G.f.: x (1+4x+9x^2+7x^3+7x^4+9x^5+4x^6+x^7+9x^8)/((1-x)(1+x+x^2)(1+x^3+x^6)). - Ant King, Oct 20 2009
Also a(n) = A010888(A057147(n)). - Reinhard Zumkeller, Mar 19 2014
MATHEMATICA
DigitalRoot[n_Integer?NonNegative] := 1 + 9*FractionalPart[(n - 1)/9] A056992[n_]:=DigitalRoot[n^2] (* Enrique Pérez Herrero, Dec 20 2009 *)
Table[FixedPoint[Total[IntegerDigits[#]]&, n^2], {n, 90}] (* Zak Seidov, Jun 13 2015 *)
PadRight[{}, 120, {1, 4, 9, 7, 7, 9, 4, 1, 9}] (* Harvey P. Dale, Apr 16 2022 *)
PROG
(Haskell)
a056992 = a010888 . a000290 -- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
KEYWORD
nonn,base,easy
STATUS
approved
a(1) = 2; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
+10
15
2, 4, 16, 112, 448, 7168, 157696, 5361664, 166211584, 5651193856, 276908498944, 19383594926080, 1298700860047360, 79220752462888960, 6733763959345561600, 592571228422409420800, 45035413360103115980800
OFFSET
1,1
COMMENTS
a(n) mod 9 = A010712(n-1) for n > 1. - Reinhard Zumkeller, Sep 23 2007
LINKS
FORMULA
a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014
MATHEMATICA
NestList[# Total[IntegerDigits[#]]&, 2, 20] (* Harvey P. Dale, Jul 18 2011 *)
PROG
(Haskell)
a047892 n = a047892_list !! (n-1)
a047892_list = iterate a057147 2 -- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
Cf. A004207.
Cf. A007953.
Cf. A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).
KEYWORD
nonn,base,easy,nice
AUTHOR
Miklos SZABO (mike(AT)ludens.elte.hu)
EXTENSIONS
Offset changed by Reinhard Zumkeller, Mar 19 2014
STATUS
approved
a(1) = 5; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
+10
11
5, 25, 175, 2275, 36400, 473200, 7571200, 166566400, 5663257600, 226530304000, 5663257600000, 226530304000000, 5663257600000000, 226530304000000000, 5663257600000000000, 226530304000000000000, 5663257600000000000000
OFFSET
1,1
COMMENTS
After a(9), every second element has the same beginning. a(11+2k) = 40 * a(10+2k) = 40 * 25 * a(9+2k).
LINKS
FORMULA
a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014
MATHEMATICA
NestList[#*Total[IntegerDigits[#]]&, 5, 20] (* Harvey P. Dale, Jan 25 2014 *)
PROG
(Haskell)
a047897 n = a047897_list !! (n-1)
a047897_list = iterate a057147 5 -- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
Cf. A047892 (start=2), A047912 (start=3), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).
KEYWORD
easy,nonn,base
AUTHOR
Miklos SZABO (mike(AT)ludens.elte.hu)
STATUS
approved
a(1) = 8; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
+10
11
8, 64, 640, 6400, 64000, 640000, 6400000, 64000000, 640000000, 6400000000, 64000000000, 640000000000, 6400000000000, 64000000000000, 640000000000000, 6400000000000000, 64000000000000000, 640000000000000000
OFFSET
1,1
COMMENTS
After the 2nd element, every element has the same beginning.
a(3+k) = 10 * a(2+k).
LINKS
FORMULA
a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014
MATHEMATICA
NestList[# Total[IntegerDigits[#]]&, 8, 20] (* or *) Join[{8}, NestList[ 10#&, 64, 20]] (* Harvey P. Dale, Jul 03 2020 *)
PROG
(Haskell)
a047900 n = a047900_list !! (n-1)
a047900_list = iterate a057147 8 -- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
Cf. A047892 (start=2), A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047901 (start=9), A047902 (start=11).
KEYWORD
easy,nonn,base
AUTHOR
Miklos SZABO (mike(AT)ludens.elte.hu)
STATUS
approved
a(1) = 11; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
+10
11
11, 22, 88, 1408, 18304, 292864, 9078784, 390387712, 15615508480, 671466864640, 38945078149120, 2375649767096320, 180549382299320320, 12638456760952422400, 960522713832384102400, 67236589968266887168000
OFFSET
1,1
LINKS
FORMULA
a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014
PROG
(Haskell)
a047902 n = a047902_list !! (n-1)
a047902_list = iterate a057147 11 -- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
Cf. A047892 (start=2), A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9).
KEYWORD
easy,nonn,base
AUTHOR
Miklos SZABO (mike(AT)ludens.elte.hu)
STATUS
approved
a(1) = 6; for n > 0, a(n+1) = a(n) * (sum of digits of a(n)).
+10
10
6, 36, 324, 2916, 52488, 1417176, 38263752, 1377495072, 61987278240, 3347313024960, 150629086123200, 6778308875544000, 488038239039168000, 35138753210820096000, 2213741452281666048000, 159389384564279955456000
OFFSET
1,1
LINKS
FORMULA
a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014
MATHEMATICA
Nest[Append[#, # Total@ IntegerDigits@ # &@ Last[#]] &, {6}, 15] (* Michael De Vlieger, Jul 08 2019 *)
PROG
(Haskell)
a047898 n = a047898_list !! (n-1)
a047898_list = iterate a057147 6 -- Reinhard Zumkeller, Mar 19 2014
(Python)
A047898_list, l = [6], 6
for _ in range(10**2):
....l *= sum(int(d) for d in str(l))
....A047898_list.append(l) # Chai Wah Wu, Jan 04 2015
CROSSREFS
Cf. A047892 (start=2), A047912 (start=3), A047897 (start=5), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).
KEYWORD
easy,nonn,base
AUTHOR
Miklos SZABO (mike(AT)ludens.elte.hu)
STATUS
approved
a(1) = 7; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
+10
10
7, 49, 637, 10192, 132496, 3312400, 43061200, 688979200, 33759980800, 1755519001600, 70220760064000, 2387505842176000, 138475338846208000, 9693273719234560000, 736688802661826560000, 64828614634240737280000
OFFSET
1,1
LINKS
FORMULA
a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014
PROG
(Haskell)
a047899 n = a047899_list !! (n-1)
a047899_list = iterate a057147 7 -- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
Cf. A047892 (start=2), A047912 (start=3), A047897 (start=5), A047898 (start=6), A047900 (start=8), A047901 (start=9), A047902 (start=11).
KEYWORD
nonn,base,easy
AUTHOR
Miklos SZABO (mike(AT)ludens.elte.hu)
STATUS
approved
a(1) = 3; for n > 0, a(n+1) = a(n) * sum of digits of a(n).
+10
10
3, 9, 81, 729, 13122, 118098, 3188646, 114791256, 4132485216, 148769467776, 10711401679872, 578415690713088, 41645929731342336, 2998506940656648192, 296852187125008171008, 24045027157125661851648
OFFSET
1,1
COMMENTS
Apart from the first term, the same as A047901. - R. J. Mathar, Oct 18 2008
LINKS
FORMULA
a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014
MATHEMATICA
NestList[# Total[IntegerDigits[#]]&, 3, 20] (* Harvey P. Dale, Mar 21 2011 *)
PROG
(Haskell)
a047912 n = a047912_list !! (n-1)
a047912_list = iterate a057147 3 -- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
Cf. A047892 (start=2), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).
KEYWORD
easy,nice,nonn,base
AUTHOR
Miklos SZABO (mike(AT)ludens.elte.hu)
STATUS
approved
a(1) = 9; a(n+1) = a(n) * sum of decimal digits of a(n).
+10
9
9, 81, 729, 13122, 118098, 3188646, 114791256, 4132485216, 148769467776, 10711401679872, 578415690713088, 41645929731342336, 2998506940656648192, 296852187125008171008, 24045027157125661851648, 2164052444141309566648320
OFFSET
1,1
LINKS
FORMULA
a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014
MATHEMATICA
NestList[# Total[IntegerDigits[#]]&, 9, 20] (* Harvey P. Dale, Feb 07 2022 *)
PROG
(Haskell)
a047901 n = a047901_list !! (n-1)
a047901_list = iterate a057147 9 -- Reinhard Zumkeller, Mar 19 2014
(Python)
A047901_list, l = [9], 9
for _ in range(10**2):
....l *= sum(int(d) for d in str(l))
....A047901_list.append(l) # Chai Wah Wu, Jan 04 2015
CROSSREFS
Cf. A047892 (start=2), A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047902 (start=11).
KEYWORD
easy,nonn,base
AUTHOR
Miklos SZABO (mike(AT)ludens.elte.hu)
EXTENSIONS
Edited by Charles R Greathouse IV, Aug 02 2010
STATUS
approved
n times the number of 1's in the binary expansion of n.
+10
6
0, 1, 2, 6, 4, 10, 12, 21, 8, 18, 20, 33, 24, 39, 42, 60, 16, 34, 36, 57, 40, 63, 66, 92, 48, 75, 78, 108, 84, 116, 120, 155, 32, 66, 68, 105, 72, 111, 114, 156, 80, 123, 126, 172, 132, 180, 184, 235, 96, 147, 150, 204, 156, 212, 216, 275, 168, 228, 232, 295, 240
OFFSET
0,3
LINKS
Project Euler, Problem 759, sequence f(n).
FORMULA
a(2*n) = 2*a(n).
a(2*n+1) = 2*n + 1 + (2+1/n)*a(n). - Robert Israel, Aug 01 2014
G.f.: x * (d/dx) (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018
EXAMPLE
G.f. = x + 2*x^2 + 6*x^3 + 4*x^4 + 10*x^5 + 12*x6 + 21*x^7 + 8*x^8 + 18*x^9 + ...
MAPLE
a:= n -> n * convert(convert(n, base, 2), `+`):
seq(a(n), n=0..100); # Robert Israel, Aug 01 2014
MATHEMATICA
Table[n*DigitCount[n, 2, 1], {n, 0, 100}] (* Harvey P. Dale, Dec 16 2014 *)
PROG
(PARI) sumbit(n) = my(r); while(n>0, r+=n%2; n\=2); r
a(n) = n*sumbit(n)
(PARI) {a(n) = if( n<0, 0, n * sumdigits(n, 2))}; /* Michael Somos, Aug 05 2014 */ /* since version 2.6.0 */
(Python) [n*bin(n)[2:].count('1') for n in range(1000)] # Chai Wah Wu, Aug 03 2014
CROSSREFS
Cf. A000120 (number of 1's), A057147 (decimal version).
KEYWORD
nonn,base
AUTHOR
STATUS
approved

Search completed in 0.015 seconds