[go: up one dir, main page]

login
Search: a056711 -id:a056711
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,k) = number of ways to insert n pairs of parentheses in k words.
+10
6
1, 2, 1, 5, 2, 1, 14, 8, 2, 1, 42, 24, 8, 2, 1, 132, 85, 28, 8, 2, 1, 429, 286, 100, 28, 8, 2, 1, 1430, 1008, 358, 105, 28, 8, 2, 1, 4862, 3536, 1309, 378, 105, 28, 8, 2, 1, 16796, 12618, 4772, 1410, 384, 105, 28, 8, 2, 1, 58786, 45220, 17556, 5220, 1435, 384, 105, 28, 8, 2, 1
OFFSET
1,2
COMMENTS
Multiset transformation of A000108. Each word is dissected by a number of parentheses associated to its length.
Also the number of forests of exactly k (unlabeled) ordered rooted trees with a total of n non-root nodes where each tree has at least 1 non-root node. - Alois P. Heinz, Sep 20 2017
FORMULA
T(n,1) = A000108(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1<k<=n.
G.f.: Product_{j>=1} 1/(1-y*x^j)^A000108(j). - Alois P. Heinz, Apr 13 2017
EXAMPLE
1
2 1
5 2 1
14 8 2 1
42 24 8 2 1
132 85 28 8 2 1
429 286 100 28 8 2 1
1430 1008 358 105 28 8 2 1
4862 3536 1309 378 105 28 8 2 1
16796 12618 4772 1410 384 105 28 8 2 1
58786 45220 17556 5220 1435 384 105 28 8 2 1
MAPLE
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
binomial(C(i)+j-1, j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 13 2017
MATHEMATICA
c[n_] := c[n] = Binomial[2*n, n]/(n + 1);
b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[c[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]];
T[n_, k_] := b[n, n, k];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 18 2018, after Alois P. Heinz *)
CROSSREFS
Cf. A000108 (1st column), A007223 (2nd column), A056711 (3rd column), A088327 (row sums).
T(2n,n) gives A292668.
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Jul 27 2016
STATUS
approved
Number of 3-bead necklaces where each bead is a planted trivalent plane tree [or anything else enumerated by the Catalan numbers], by total number of nodes.
+10
3
1, 1, 3, 8, 24, 74, 245, 815, 2796, 9707, 34186, 121562, 436298, 1577310, 5740299, 21008777, 77279892, 285544700, 1059332082, 3944254118, 14734260864, 55207053787, 207421476390, 781283558998, 2949675307082, 11160264942376, 42309912978708, 160700303600030
OFFSET
0,3
COMMENTS
With offset = 3, a(n) is the number of forests having exactly three rooted plane trees with n total nodes. - Geoffrey Critzer, Feb 22 2013
LINKS
FORMULA
Plug g.f. for A000108, 1/2*(1-(1-4*x)^(1/2))/x, into cycle index for dihedral group D_6.
Cycle index for D_6: 1/6*Z[1]^3+1/2*Z[1]*Z[2]+1/3*Z[3].
a(n) = Sum_{j=0..3} A275431(n,j). - Alois P. Heinz, Sep 20 2017
MATHEMATICA
nn=30; Drop[CoefficientList[Series[ CycleIndex[SymmetricGroup[3], s]/.Table[s[i]->(1-(1-4x^i)^(1/2))/2, {i, 1, nn}], {x, 0, nn}], x], 3] (* Geoffrey Critzer, Feb 22 2013 *)
CROSSREFS
See A058855 (a 6-bead analog) for details.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 19 2001
STATUS
approved

Search completed in 0.009 seconds