OFFSET
1,2
COMMENTS
Multiset transformation of A000108. Each word is dissected by a number of parentheses associated to its length.
Also the number of forests of exactly k (unlabeled) ordered rooted trees with a total of n non-root nodes where each tree has at least 1 non-root node. - Alois P. Heinz, Sep 20 2017
LINKS
FORMULA
T(n,1) = A000108(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1<k<=n.
G.f.: Product_{j>=1} 1/(1-y*x^j)^A000108(j). - Alois P. Heinz, Apr 13 2017
EXAMPLE
1
2 1
5 2 1
14 8 2 1
42 24 8 2 1
132 85 28 8 2 1
429 286 100 28 8 2 1
1430 1008 358 105 28 8 2 1
4862 3536 1309 378 105 28 8 2 1
16796 12618 4772 1410 384 105 28 8 2 1
58786 45220 17556 5220 1435 384 105 28 8 2 1
MAPLE
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
binomial(C(i)+j-1, j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 13 2017
MATHEMATICA
c[n_] := c[n] = Binomial[2*n, n]/(n + 1);
b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[c[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]];
T[n_, k_] := b[n, n, k];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 18 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Jul 27 2016
STATUS
approved