[go: up one dir, main page]

login
Search: a056314 -id:a056314
     Sort: relevance | references | number | modified | created      Format: long | short | data
Array read by antidiagonals: T(n,k) = number of primitive (aperiodic) reversible strings of length n using a maximum of k different symbols.
+10
8
1, 2, 0, 3, 1, 0, 4, 3, 4, 0, 5, 6, 15, 7, 0, 6, 10, 36, 39, 18, 0, 7, 15, 70, 126, 132, 29, 0, 8, 21, 120, 310, 540, 357, 70, 0, 9, 28, 189, 645, 1620, 2034, 1131, 126, 0, 10, 36, 280, 1197, 3990, 7790, 8316, 3276, 266, 0
OFFSET
1,2
COMMENTS
A string and its reverse are considered to be equivalent.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
FORMULA
T(n, k) = Sum_{d | n} mu(n/d) * (k^n + k^(ceiling(n/2))) / 2.
EXAMPLE
Table starts:
1 2 3 4 5 6 7 8 ...
0 1 3 6 10 15 21 28 ...
0 4 15 36 70 120 189 280 ...
0 7 39 126 310 645 1197 2044 ...
0 18 132 540 1620 3990 8568 16632 ...
0 29 357 2034 7790 23295 58779 131012 ...
0 70 1131 8316 39370 140610 412965 1050616 ...
0 126 3276 32760 195300 839790 2882376 8388576 ...
...
MATHEMATICA
b[n_, k_] := (k^n + k^Ceiling[n/2])/2;
a[n_, k_] := DivisorSum[n, MoebiusMu[n/#] b[#, k]&];
Table[a[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017, translated from PARI *)
PROG
(PARI)
b(n, k) = (k^n + k^(ceil(n/2))) / 2;
a(n, k) = sumdiv(n, d, moebius(n/d) * b(d, k));
for(n=1, 10, for(k=1, 10, print1( a(n, k), ", "); ); print(); );
CROSSREFS
Columns 2-6 are A045625, A056314, A056315, A056316, A056317.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 04 2017
STATUS
approved
Number of primitive (aperiodic) reversible strings with n beads using a maximum of four different colors.
+10
3
4, 6, 36, 126, 540, 2034, 8316, 32760, 131544, 524250, 2099196, 8388450, 33562620, 134217594, 536903100, 2147483520, 8590065660, 34359735816, 137439477756, 549755813250, 2199025344348, 8796093020154
OFFSET
1,1
COMMENTS
A string and its reverse are considered to be equivalent.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
FORMULA
Sum mu(d)*A032121(n/d) where d|n.
CROSSREFS
Column 4 of A284871.
KEYWORD
nonn
STATUS
approved
Number of primitive (aperiodic) reversible string structures with n beads using a maximum of three different colors.
+10
3
1, 1, 3, 8, 24, 65, 195, 564, 1677, 4976, 14883, 44452, 133224, 399113, 1196808, 3588840, 10764960, 32289855, 96864963, 290580040, 871725426, 2615132465, 7845353475, 23535926760, 70607649816, 211822550576
OFFSET
1,3
COMMENTS
A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
FORMULA
a(n) = Sum mu(d)*A001998(n/d-1) where d|n.
MATHEMATICA
a1998[n_] := If[OddQ[n], (1/4)*(3^n + 4*3^((n-1)/2) + 1), (1/4)*(3^n + 2*3^(n/2) + 1)];
a[n_] := DivisorSum[n, MoebiusMu[#] a1998[n/#-1]&];
Array[a, 26] (* Jean-François Alcover, Jun 29 2018 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved
Number of primitive (aperiodic) reversible strings with n beads using exactly three different colors.
+10
1
0, 0, 3, 18, 78, 270, 921, 2898, 9147, 27987, 85773, 259557, 785778, 2366892, 7128120, 21425040, 64382550, 193316685, 580372293, 1741819245, 5227115454, 15684238080, 47059266081, 141189599250
OFFSET
1,3
COMMENTS
Each string and its reverse are considered to be equivalent.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
FORMULA
Sum mu(d)*A056310(n/d) where d|n.
CROSSREFS
Cf. A056314.
KEYWORD
nonn
STATUS
approved

Search completed in 0.012 seconds