OFFSET
1,2
COMMENTS
A string and its reverse are considered to be equivalent.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
FORMULA
T(n, k) = Sum_{d | n} mu(n/d) * (k^n + k^(ceiling(n/2))) / 2.
EXAMPLE
Table starts:
1 2 3 4 5 6 7 8 ...
0 1 3 6 10 15 21 28 ...
0 4 15 36 70 120 189 280 ...
0 7 39 126 310 645 1197 2044 ...
0 18 132 540 1620 3990 8568 16632 ...
0 29 357 2034 7790 23295 58779 131012 ...
0 70 1131 8316 39370 140610 412965 1050616 ...
0 126 3276 32760 195300 839790 2882376 8388576 ...
...
MATHEMATICA
b[n_, k_] := (k^n + k^Ceiling[n/2])/2;
a[n_, k_] := DivisorSum[n, MoebiusMu[n/#] b[#, k]&];
Table[a[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017, translated from PARI *)
PROG
(PARI)
b(n, k) = (k^n + k^(ceil(n/2))) / 2;
a(n, k) = sumdiv(n, d, moebius(n/d) * b(d, k));
for(n=1, 10, for(k=1, 10, print1( a(n, k), ", "); ); print(); );
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 04 2017
STATUS
approved