[go: up one dir, main page]

login
Search: a055086 -id:a055086
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number T(n,k) of partitions of n with k parts in which no part occurs more than twice; triangle T(n,k), n>=0, 0<=k<=A055086(n), read by rows.
+20
11
1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 5, 3, 0, 1, 4, 6, 4, 1, 0, 1, 5, 8, 6, 2, 0, 1, 5, 10, 8, 3, 0, 1, 6, 11, 12, 5, 1, 0, 1, 6, 14, 14, 8, 1, 0, 1, 7, 16, 19, 11, 3, 0, 1, 7, 18, 23, 16, 5
OFFSET
0,12
LINKS
EXAMPLE
T(8,3) = 5: [6,1,1], [5,2,1], [4,3,1], [4,2,2], [3,3,2].
T(8,4) = 3: [4,2,1,1], [3,3,1,1], [3,2,2,1].
T(9,3) = 6: [7,1,1], [6,2,1], [5,3,1], [4,4,1], [5,2,2], [4,3,2].
T(9,4) = 4: [5,2,1,1], [4,3,1,1], [4,2,2,1], [3,3,2,1].
T(9,5) = 1: [3,2,2,1,1].
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 1;
0, 1, 2, 1;
0, 1, 2, 2;
0, 1, 3, 2, 1;
0, 1, 3, 4, 1;
0, 1, 4, 5, 3;
0, 1, 4, 6, 4, 1;
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(expand(b(n-i*j, i-1)*x^j), j=0..min(2, n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..20);
MATHEMATICA
max = 15; g = -1+Product[1+t*x^j+t^2*x^(2j), {j, 1, max}]; t[n_, k_] := SeriesCoefficient[g, {x, 0, n}, {t, 0, k}]; t[0, 0] = 1; Table[Table[t[n, k], {k, 0, n}] /. {a__, 0 ..} -> {a}, {n, 0, max}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
CROSSREFS
Columns k=0-10 give: A000007, A057427, A004526, A230059 (conjectured), A320592, A320593, A320594, A320595, A320596, A320597, A320598.
Row sums give: A000726.
Row lengths give: A000267.
Cf. A002620, A008289 (no part more than once), A055086, A117147 (no part more than 3 times).
KEYWORD
nonn,tabf,look
AUTHOR
Alois P. Heinz, Jan 19 2013
STATUS
approved
a(n) = A055086(n) - A000005(n).
+20
8
0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 3, 0, 4, 2, 2, 2, 5, 1, 5, 2, 4, 4, 6, 0, 6, 5, 5, 3, 7, 2, 8, 4, 6, 6, 6, 2, 9, 7, 7, 3, 9, 4, 10, 6, 6, 8, 10, 2, 10, 7, 9, 7, 11, 5, 9, 6, 10, 10, 12, 2, 12, 10, 8, 8, 11, 7, 13, 9, 11, 7, 13, 4, 14, 12, 10, 10, 12, 8, 14, 6, 12, 13, 15, 5, 13, 13, 13, 9, 15, 6, 14
OFFSET
1,7
COMMENTS
It appears that the indices of the zeros in the sequence are in A018253. - Omar E. Pol, Oct 22 2013
EXAMPLE
n=15: sequence of D1 = {floor(15/j)} = {15,7,5,3,3,2,2,1,1,1,1,1,1,1,1}, Union(D1) = {15,7,5,3,2,1} = divisors(15) and {7,2}, a(15)=2 the number of terms beyond divisors.
MATHEMATICA
Table[Length[Union[Table[Floor[w/j], {j, 1, w}]]] -DivisorSigma[0, w], {w, 1, 128}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 27 2002
STATUS
approved
a(n) = A055086(n!).
+20
5
1, 2, 4, 8, 20, 52, 140, 400, 1203, 3808, 12634, 43771, 157821, 590518, 2287070, 9148286, 37719353, 160029667, 697553152, 3119552536, 14295585635, 67052240163, 321571247089, 1575370942644, 7876854713228, 40164235888490, 208699491618146, 1104333907134455, 5947020092025820
OFFSET
1,2
LINKS
FORMULA
a(n) = A027423(n) + A078155(n). - Amiram Eldar, Aug 18 2024
MATHEMATICA
Table[ Length[ Union[ Table[ Floor[w!/j], {j, 1, w!}]]], {w, 1, 11}]
a[n_] := Floor[Sqrt[4*n! + 1]] - 1; Array[a, 30] (* Amiram Eldar, Aug 18 2024 *)
PROG
(PARI) a(n)=sqrtint(4*n! + 1) - 1 \\ Charles R Greathouse IV, Mar 01 2018
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 27 2002
EXTENSIONS
Extended by Robert G. Wilson v, Dec 02 2002
More terms from Charles R Greathouse IV, Mar 01 2018
a(25)-a(29) from Amiram Eldar, Aug 18 2024
STATUS
approved
Triangle read by rows: T(n,k), n>=1, k>=1, in which row n lists m terms, where m = A055086(n). If k divides n and k < n^(1/2) then T(n,k) = k and T(n,m-k+1) = n/T(n,k). Also, if k^2 = n then T(n,k) = k. Other terms are zeros.
+20
4
1, 1, 2, 1, 3, 1, 2, 4, 1, 0, 5, 1, 2, 3, 6, 1, 0, 0, 7, 1, 2, 4, 8, 1, 0, 3, 0, 9, 1, 2, 0, 5, 10, 1, 0, 0, 0, 11, 1, 2, 3, 4, 6, 12, 1, 0, 0, 0, 0, 13, 1, 2, 0, 0, 7, 14, 1, 0, 3, 5, 0, 15, 1, 2, 0, 4, 0, 8, 16, 1, 0, 0, 0, 0, 0, 17, 1, 2, 3, 0, 6, 9, 18
OFFSET
1,3
COMMENTS
The number of positive terms of row n is A000005(n).
The positive terms of row n are the divisors of n in increasing order.
Row n has length A055086(n).
Column k starts in row A002620(k+1).
The number of zeros in row n equals A078152(n).
The sum of row n is A000203(n).
Positive terms give A027750.
It appears that there are only eight rows that do not contain zeros. The indices of these rows are 1, 2, 3, 4, 6, 8, 12, 24, the divisors of 24, see A018253.
For another version see A228814.
EXAMPLE
For n = 60 the 60th row of triangle is [1, 2, 3, 4, 5, 6, 0, 0, 10, 12, 15, 20, 30, 60]. The row length is A055086(60) = 14. The number of zeros is A078152(60) = 2. The number of positive terms is A000005(60) = 12. The positive terms are the divisors of 60. The row sum is A000203(60) = 168.
Triangle begins:
1;
1, 2;
1, 3;
1, 2, 4;
1, 0, 5;
1, 2, 3, 6;
1, 0, 0, 7;
1, 2, 4, 8;
1, 0, 3, 0, 9;
1, 2, 0, 5, 10;
1, 0, 0, 0, 11;
1, 2, 3, 4, 6, 12;
1, 0, 0, 0, 0, 13;
1, 2, 0, 0, 7, 14;
1, 0, 3, 5, 0, 15;
1, 2, 0, 4, 0, 8, 16;
1, 0, 0, 0, 0, 0, 17;
1, 2, 3, 0, 6, 9, 18;
1, 0, 0, 0, 0, 0, 19;
1, 2, 0, 4, 5, 0, 10, 20;
1, 0, 3, 0, 0, 7, 0, 21;
1, 2, 0, 0, 0, 0, 11, 22;
1, 0, 0, 0, 0, 0, 0, 23;
1, 2, 3, 4, 6, 8, 12, 24;
...
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Oct 03 2013
STATUS
approved
a(n) = A055086(2^n).
+20
3
2, 3, 4, 7, 10, 15, 21, 31, 44, 63, 89, 127, 180, 255, 361, 511, 723, 1023, 1447, 2047, 2895, 4095, 5791, 8191, 11584, 16383, 23169, 32767, 46339, 65535, 92680, 131071, 185362, 262143, 370726, 524287, 741454, 1048575, 1482909, 2097151, 2965819, 4194303, 5931640, 8388607
OFFSET
1,1
COMMENTS
a(2n-2)=2^n-1 and a(n)=2a(n-2)+1 generally.
MATHEMATICA
Table[ Length[ Union[ Table[ Floor[2^w/j], {j, 1, 2^w}]]], {w, 1, 25}]
PROG
(PARI) a(n) = ceil(2*sqrt(2^n+1)) - 2; \\ Michel Marcus, Sep 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 27 2002
EXTENSIONS
Extended by Robert G. Wilson v, Dec 02 2002
More terms from Michel Marcus, Sep 02 2019
STATUS
approved
a(n) = A055086(A000040(n)).
+20
1
2, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 19, 19, 20, 21, 21, 22, 22, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32, 32, 33, 34, 34, 34, 34, 35, 35, 36, 36, 36, 36
OFFSET
1,1
EXAMPLE
n=25:p(25)=97, sequence Union[Floor[97/j]]= {1,2,3,4,5,6,7,8,9,10,12,13,16,19,24,32,48,97}, a[25]=18.
MATHEMATICA
Table[Length[Union[Table[Floor[Prime[w]/j], {j, 1, Prime[w]}]]], {w, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 27 2002
STATUS
approved
Integer part of square root of 4n+1.
+10
25
1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17
OFFSET
0,2
COMMENTS
1^1, 2^1, 3^2, 4^2, 5^3, 6^3, 7^4, 8^4, 9^5, 10^5, ...
Start with n, repeatedly subtract the square root of the previous term; a(n) gives number of steps to reach 0. - Robert G. Wilson v, Jul 22 2002
Triangle A094727 read by diagonals. - Philippe Deléham, Mar 21 2014
Partial sums of A240025; a(n) = number of quarter squares <= n. - Reinhard Zumkeller, Jul 05 2014
Every number k is present consecutively (floor((2*k+3)/4)) times. - Bernard Schott, Jun 08 2019
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 20.
Bruce C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, 1994, see p. 77, Entry 23.
LINKS
Gal Cohensius, Urban Larsson, Reshef Meir, and David Wahlstedt, Cumulative subtraction games, arXiv:1805.09368 [math.CO], 2018-2020.
S. Ramanujan, Question 723, J. Ind. Math. Soc., Vol. 7 (1915), p. 240, Vol. 10 (1918), pp. 357-358.
FORMULA
floor(a(n)/2) = A000196(n).
a(n) = 1 + a(n - floor(n^(1/2))), if n>0. - Michael Somos, Jul 22 2002
a(n) = floor( 1 / ( sqrt(n + 1) - sqrt(n) ) ). - Robert A. Stump (bob_ess107(AT)yahoo.com), Apr 07 2003
a(n) = |{floor(n/k): k in Z+}|. - David W. Wilson, May 26 2005
a(n) = ceiling(2*sqrt(n+1) - 1). - Mircea Merca, Feb 03 2012
a(n) = A000196(A016813(n)). - Reinhard Zumkeller, Dec 13 2012
a(n) = A070939(A227368(n+1)), conjectured. - Antti Karttunen, Dec 28 2013
a(n) = floor( sqrt(n) + sqrt(n+2) ). [Bruno Berselli, Jan 08 2015]
a(n) = floor( sqrt(4*n + k) ) where k = 1, 2, or 3. - Michael Somos, Mar 11 2015
G.f.: (Sum_{k>0} x^floor(k^2 / 4)) / (1 - x). - Michael Somos, Mar 11 2015
a(n) = 1 + A055086(n). - Michael Somos, Sep 02 2017
a(n) = floor(sqrt(n+1)+1/2) + floor(sqrt(n)). - Ridouane Oudra, Jun 07 2019
Sum_{k>=0} (-1)^k/a(k) = Pi/8 + log(2)/4. - Amiram Eldar, Jan 26 2024
EXAMPLE
From Philippe Deléham, Mar 21 2014: (Start)
Triangle A094727 begins:
1;
2, 3;
3, 4, 5;
4, 5, 6, 7;
5, 6, 7, 8, 9;
6, 7, 8, 9, 10, 11; ...
Read by diagonals:
1;
2;
3, 3;
4, 4;
5, 5, 5;
6, 6, 6;
7, 7, 7, 7;
8, 8, 8, 8;
9, 9, 9, 9, 9;
10, 10, 10, 10, 10; (End)
G.f. = 1 + 2*x + 3*x^2 + 3*x^3 + 4*x^4 + 4*x^5 + 5*x^6 + 5*x^7 + 5*x^8 + 6*x^9 + ...
MAPLE
A000267:=seq(floor(sqrt(4*n+1)), n=0..100); // Bernard Schott, Jun 08 2019
MATHEMATICA
Table[Floor[Sqrt[4*n + 1]], {n, 0, 100}] (* T. D. Noe, Jun 19 2012 *)
PROG
(PARI) {a(n) = if( n<0, 0, sqrtint(4*n + 1))};
(Haskell)
a000267 = a000196 . a016813 -- Reinhard Zumkeller, Dec 13 2012
(Magma) [Floor(Sqrt(4*n+1)): n in [0..100]]; // Vincenzo Librandi, Jun 08 2019
KEYWORD
nonn,easy,nice,tabf
EXTENSIONS
More terms from Michael Somos, Jun 13 2000
STATUS
approved
Triangle read by rows T(n,k) in which column k lists 1's interleaved with A004526(k-1) zeros starting from the row A002620(k+1), with n>=1, k>=1.
+10
13
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0
OFFSET
1
COMMENTS
The sum of row n equals the number of divisors of n.
The number of zeros in row n equals A078152(n).
It appears that there are only eight rows that do not contain zeros. The indices of these rows are 1, 2, 3, 4, 6, 8, 12, 24, the divisors of 24, see A018253.
It appears that A066522 gives the indices of the rows in which the elements are in nonincreasing order.
EXAMPLE
For n = 10, row 10 is [1, 1, 1, 1, 0], and the sum of row 10 is 1+1+1+1+0 = 4. On the other hand, 10 has four divisors: 1, 2, 5, and 10. Note that the sum of row 10 is also A000005(10) = 4, the number of divisors of 10.
Triangle begins:
1;
1, 1;
1, 1;
1, 1, 1;
1, 1, 0;
1, 1, 1, 1;
1, 1, 0, 0;
1, 1, 1, 1;
1, 1, 0, 0, 1;
1, 1, 1, 1, 0;
1, 1, 0, 0, 0;
1, 1, 1, 1, 1, 1;
1, 1, 0, 0, 0, 0;
1, 1, 1, 1, 0, 0;
1, 1, 0, 0, 1, 1;
1, 1, 1, 1, 0, 0, 1;
1, 1, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 0;
1, 1, 0, 0, 0, 0, 0;
1, 1, 1, 1, 0, 0, 1, 1;
1, 1, 0, 0, 1, 1, 0, 0;
1, 1, 1, 1, 0, 0, 0, 0;
1, 1, 0, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1;
...
CROSSREFS
Row sums give A000005.
Row n has length A055086(n).
Columns 1 and 2: A000012. Columns 3 and 4: A059841.
Columns 5 and 6: A079978. Columns 7 and 8: A121262.
Columns 9 and 10: A079998. Columns 11 and 12: A079979.
Columns 13 and 14: A082784.
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Sep 29 2013
STATUS
approved
Triangle T(n,k) read by rows: number of 1-dimensional sandpiles (see A186085) with n grains and base length k.
+10
6
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 3, 4, 1, 0, 0, 0, 0, 1, 6, 5, 1, 0, 0, 0, 0, 1, 4, 10, 6, 1, 0, 0, 0, 0, 0, 3, 10, 15, 7, 1, 0, 0, 0, 0, 0, 2, 8, 20, 21, 8, 1, 0, 0, 0, 0, 0, 1, 7, 19, 35, 28, 9, 1, 0, 0, 0, 0, 0, 0, 5, 18, 40, 56, 36, 10, 1, 0, 0, 0, 0, 0, 0, 3, 16, 41, 76, 84, 45, 11, 1, 0, 0, 0, 0, 0, 0, 1, 12, 41, 86, 133, 120, 55, 12, 1
OFFSET
0,14
COMMENTS
Compositions of n into k nonzero parts such that the first and last parts are 1 and the absolute difference between consecutive parts is <=1.
Row sums are A186085.
Column sums are the Motzkin numbers (A001006).
First nonzero entry in row n appears in column A055086(n).
From Joerg Arndt, Nov 06 2012: (Start)
The transposed triangle (with zeros omitted) is A129181.
For large k, the columns end in reverse([1, 1, 3, 5, 9, 14, 24, 35, ...]) for k even (cf. A053993) and reverse([1, 2, 3, 6, 10, 16, 26, 40, 60, 90, ...]) for k odd (cf. A201077).
The diagonals below the main diagonal are (apart from leading zeros), n, n*(n+1)/2, n*(n+1)*(n+2)/6, and the e-th diagonal appears to have a g.f. of the form f(x)/(1-x)^e.
(End)
LINKS
Joerg Arndt, the first 36 rows as Pari script.
FORMULA
G.f. A(x,y) satisfies: A(x,y) = 1/(1 - x*y - x^3*y^2*A(x, x*y) ). [Paul D. Hanna, Feb 22 2011]
G.f.: (formatting to make the structure apparent)
A(x,y) = 1 /
(1 - x^1*y / (1 - x^2*y / (1 - x^5*y^2 /
(1 - x^3*y / (1 - x^4*y / (1 - x^9*y^2 /
(1 - x^5*y / (1 - x^6*y / (1 - x^13*y^2 /
(1 - x^7*y / (1 - x^8*y / (1 - x^17*y^2 / (1 -...)))))))))))))
(continued fraction). [Paul D. Hanna]
G.f.: A(x,y) = 1/(1-x*y - x^3*y^2/(1-x^2*y - x^5*y^2/(1-x^3*y - x^7*y^2/(1 -...)))) (continued fraction). [Paul D. Hanna]
EXAMPLE
Triangle begins:
1;
0,1;
0,0,1;
0,0,1,1;
0,0,0,2,1;
0,0,0,1,3,1;
0,0,0,0,3,4,1;
0,0,0,0,1,6,5,1;
0,0,0,0,1,4,10,6,1;
0,0,0,0,0,3,10,15,7,1;
0,0,0,0,0,2,8,20,21,8,1;
0,0,0,0,0,1,7,19,35,28,9,1;
MAPLE
b:= proc(n, i) option remember; `if`(n=0, `if`(i=1, 1, 0),
`if`(n<0 or i<1, 0, expand(x*add(b(n-i, i+j), j=-1..1)) ))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)):
seq(T(n), n=0..20); # Alois P. Heinz, Jul 24 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, If[i == 1, 1, 0], If[n<0 || i<1, 0, Expand[ x*Sum[b[n-i, i+j], {j, -1, 1}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
PROG
(PARI) {T(n, k)=local(A=1+x*y); for(i=1, n, A=1/(1-x*y-x^3*y^2*subst(A, y, x*y+x*O(x^n)))); polcoeff(polcoeff(A, n, x), k, y)}
CROSSREFS
Cf. A186085 (sandpiles with n grains, row sums), A001006 (Motzkin numbers, column sums), A055086.
Cf. A186505 (antidiagonal sums).
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt, Feb 13 2011
STATUS
approved
Triangle read by rows T(n,k), n>=1, k>=1, in which column k starts in row A002620(k+1). If k is odd the column k lists j's interleaved with (k-1)/2 zeros, where j = (k+1)/2. Otherwise, if k is even the column k lists the positive integers but starting from k/2+1, interleaved with (k-2)/2 zeros.
+10
6
1, 1, 2, 1, 3, 1, 4, 2, 1, 5, 0, 1, 6, 2, 3, 1, 7, 0, 0, 1, 8, 2, 4, 1, 9, 0, 0, 3, 1, 10, 2, 5, 0, 1, 11, 0, 0, 0, 1, 12, 2, 6, 3, 4, 1, 13, 0, 0, 0, 0, 1, 14, 2, 7, 0, 0, 1, 15, 0, 0, 3, 5, 1, 16, 2, 8, 0, 0, 4, 1, 17, 0, 0, 0, 0, 0, 1, 18, 2, 9, 3, 6, 0
OFFSET
1,3
COMMENTS
The number of positive terms of row n is A000005(n).
The positive terms of row n are the divisors of n.
The number of zeros in row n equals A078152(n).
Row n has length A055086(n).
The sum of row n is A000203(n).
Positive terms give A210959.
It appears that there are only eight rows that do not contain zeros. The indices of these rows are 1, 2, 3, 4, 6, 8, 12, 24, the divisors of 24, see A018253.
For another version see A228812.
EXAMPLE
For n = 60 the 60th row of triangle is [1, 60, 2, 30, 3, 20, 4, 15, 5, 12, 6, 10, 0, 0]. The row length is A055086(60) = 14. The number of zeros is A078152(60) = 2. The number of positive terms is A000005(60) = 12. The row sum is A000203(60) = 168.
Triangle begins:
1;
1, 2;
1, 3;
1, 4, 2;
1, 5, 0;
1, 6, 2, 3;
1, 7, 0, 0;
1, 8, 2, 4;
1, 9, 0, 0, 3;
1, 10, 2, 5, 0;
1, 11, 0, 0, 0;
1, 12, 2, 6, 3, 4;
1, 13, 0, 0, 0, 0;
1, 14, 2, 7, 0, 0;
1, 15, 0, 0, 3, 5;
1, 16, 2, 8, 0, 0, 4;
1, 17, 0, 0, 0, 0, 0;
1, 18, 2, 9, 3, 6, 0;
1, 19, 0, 0, 0, 0, 0;
1, 20, 2, 10, 0, 0, 4, 5;
1, 21, 0, 0, 3, 7, 0, 0;
1, 22, 2, 11, 0, 0, 0, 0;
1, 23, 0, 0, 0, 0, 0, 0;
1, 24, 2, 12, 3, 8, 4, 6;
...
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Oct 03 2013
STATUS
approved

Search completed in 0.015 seconds