[go: up one dir, main page]

login
Search: a053990 -id:a053990
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers of the form x*(x+1) * y*(y+1) ("bipronics") with x and y nonnegative integers.
+10
7
0, 4, 12, 24, 36, 40, 60, 72, 84, 112, 120, 144, 180, 220, 240, 252, 264, 312, 336, 360, 364, 400, 420, 432, 480, 504, 540, 544, 600, 612, 660, 672, 684, 760, 792, 840, 864, 900, 924, 936, 1012, 1080, 1092, 1104, 1120, 1200, 1260, 1300, 1320
OFFSET
1,2
COMMENTS
Nonnegative numbers k = a*b = c*d, where a+b = c+d+1. - Yifan Xie, Jun 28 2024
EXAMPLE
a(3) = 1*2*2*3 = 12.
PROG
(PARI) A003056(n)=(sqrtint(8*n+1)-1)\2
list(lim)=my(v=List([0]), t); for(a=1, A003056(lim\4), t=a*(a+1); for(b=a, A003056(lim\t\2), listput(v, b*(b+1)*t))); Set(v) \\ Charles R Greathouse IV, Jul 11 2024
CROSSREFS
Cf. A053990 (sequence of bipronics with x and y distinct).
Cf. A085780 (one quarter of this).
KEYWORD
nonn,easy
AUTHOR
Stuart M. Ellerstein (ellerstein(AT)aol.com), Jul 20 2002
EXTENSIONS
More terms from James A. Sellers, Jul 23 2002
STATUS
approved
Numbers of the form x*(x + 1)*y*(y + 1)/4 where x and y are distinct.
+10
5
0, 3, 6, 10, 15, 18, 21, 28, 30, 36, 45, 55, 60, 63, 66, 78, 84, 90, 91, 105, 108, 120, 126, 135, 136, 150, 153, 165, 168, 171, 190, 198, 210, 216, 231, 234, 253, 270, 273, 276, 280, 300, 315, 325, 330, 351, 360, 378, 396, 406, 408, 420, 435, 450, 459, 465, 468
OFFSET
1,2
FORMULA
a(n) = A053990(n) / 4. - Sean A. Irvine, Feb 19 2022
MATHEMATICA
With[{upto=500}, Select[Union[(#[[1]](#[[1]]+1)#[[2]](#[[2]]+1))/4&/@ Subsets[ Range[0, Floor[upto/2]], {2}]], #<=upto&]] (* Harvey P. Dale, Jan 15 2015 *)
CROSSREFS
Cf. A053990, A054734. Contains all triangular numbers >1.
KEYWORD
nonn,easy
AUTHOR
Stuart M. Ellerstein (ellerstein(AT)aol.com), Apr 22 2000
EXTENSIONS
More terms from James A. Sellers, Apr 22 2000
STATUS
approved
Numbers of the form 2*x*(x + 1)*y*(y + 1) where x and y are distinct.
+10
2
0, 24, 48, 80, 120, 144, 168, 224, 240, 288, 360, 440, 480, 504, 528, 624, 672, 720, 728, 840, 864, 960, 1008, 1080, 1088, 1200, 1224, 1320, 1344, 1368, 1520, 1584, 1680, 1728, 1848, 1872, 2024, 2160, 2184, 2208, 2240, 2400, 2520, 2600, 2640, 2808
OFFSET
1,2
FORMULA
a(n) = 2 * A053990(n). - Sean A. Irvine, Feb 20 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stuart M. Ellerstein (ellerstein(AT)aol.com), Apr 22 2000
EXTENSIONS
More terms from James A. Sellers, Apr 22 2000
STATUS
approved
Array T(m,n) of products of pronic numbers m(m+1) * n(n+1) read by antidiagonals ("bipronics").
+10
1
0, 0, 0, 0, 4, 0, 0, 12, 12, 0, 0, 24, 36, 24, 0, 0, 40, 72, 72, 40, 0, 0, 60, 120, 144, 120, 60, 0, 0, 84, 180, 240, 240, 180, 84, 0, 0, 112, 252, 360, 400, 360, 252, 112, 0, 0, 144, 336, 504, 600, 600, 504, 336, 144, 0, 0, 180, 432, 672, 840, 900, 840, 672, 432, 180, 0, 0
OFFSET
0,5
EXAMPLE
Array begins
0 0 0 0 0 0 ...
0 4 12 24 40 ...
0 12 36 72 120 ...
0 24 72 144 240 ...
MAPLE
T := (m, n)->m*(m+1)*n*(n+1): seq(seq(T(q-p, p), p=0..q), q=0..12);
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Stuart M. Ellerstein (ellerstein(AT)aol.com), Jul 20 2002
EXTENSIONS
Corrected and extended by Emeric Deutsch, Mar 04 2004
STATUS
approved

Search completed in 0.007 seconds