[go: up one dir, main page]

login
Search: a048643 -id:a048643
     Sort: relevance | references | number | modified | created      Format: long | short | data
Differences between partial sums of Gray code (A048641) and triangular numbers (A000217).
+10
2
0, 0, 1, 0, 2, 4, 3, 0, 4, 8, 13, 16, 14, 12, 7, 0, 8, 16, 25, 32, 42, 52, 59, 64, 60, 56, 53, 48, 38, 28, 15, 0, 16, 32, 49, 64, 82, 100, 115, 128, 148, 168, 189, 208, 222, 236, 247, 256, 248, 240, 233, 224, 218, 212, 203, 192, 172, 152, 133, 112, 86, 60, 31, 0, 32, 64
OFFSET
0,5
COMMENTS
a(2^n-1) = 0 for all n.
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 40.
FORMULA
a(n) = sum(XORnos(j, floor(j/2)), j=0..n)-((n^2+n)/2).
MATHEMATICA
{0}~Join~MapIndexed[#1 - PolygonalNumber[First[#2]] &, Accumulate[Array[BitXor[#, Floor[#/2]] &, 65]]] (* Michael De Vlieger, Oct 29 2022 *)
PROG
(PARI) a(n) = sum(k=0, n, bitxor(k, k>>1)) - n*(n+1)/2; \\ Michel Marcus, Oct 02 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Antti Karttunen, Jul 14 1999
EXTENSIONS
Corrected by Don Reble, May 01 2006
STATUS
approved

Search completed in 0.005 seconds