[go: up one dir, main page]

login
Search: a047921 -id:a047921
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number T(n,k) of permutations of [n] having exactly k consecutive triples j, j+1, j-1; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.
+0
1
1, 1, 2, 5, 1, 20, 4, 102, 18, 626, 92, 2, 4458, 564, 18, 36144, 4032, 144, 328794, 32898, 1182, 6, 3316944, 301248, 10512, 96, 36755520, 3057840, 102240, 1200, 443828184, 34073184, 1085904, 14304, 24, 5800823880, 413484240, 12538080, 174000, 600, 81591320880
OFFSET
0,3
COMMENTS
Terms in column k are multiples of k!.
LINKS
FORMULA
T(3n,n) = n!.
EXAMPLE
T(4,1) = 4: 1342, 2314, 3421, 4231.
Triangle T(n,k) begins:
1;
1;
2;
5, 1;
20, 4;
102, 18;
626, 92, 2;
4458, 564, 18;
36144, 4032, 144;
328794, 32898, 1182, 6;
3316944, 301248, 10512, 96;
36755520, 3057840, 102240, 1200;
443828184, 34073184, 1085904, 14304, 24;
5800823880, 413484240, 12538080, 174000, 600;
81591320880, 5428157760, 156587040, 2214720, 10800;
1228888215960, 76651163160, 2105035440, 29777520, 175800, 120;
...
MAPLE
b:= proc(s, l, t) option remember; `if`(s={}, 1, add((h->
expand(b(s minus {j}, j, `if`(h=1, 2, 1))*
`if`(t=2 and h=-2, x, 1)))(j-l), j=s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
b({$1..n}, -1, 1)):
seq(T(n), n=0..13);
MATHEMATICA
b[s_, l_, t_] := b[s, l, t] = If[s == {}, 1, Sum[Function[h,
Expand[b[s ~Complement~ {j}, j, If[h == 1, 2, 1]]*
If[t == 2 && h == -2, x, 1]]][j - l], {j, s}]];
T[n_] := CoefficientList[b[Range[n], -1, 1], x];
T /@ Range[0, 13] // Flatten (* Jean-François Alcover, Apr 26 2021, after Alois P. Heinz *)
CROSSREFS
Column k=0 gives A212580.
Row sums give A000142.
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Apr 18 2021
STATUS
approved
Number of permutations of length n without 3-sequences.
(Formerly M1536 N0600)
+0
14
1, 1, 2, 5, 21, 106, 643, 4547, 36696, 332769, 3349507, 37054436, 446867351, 5834728509, 82003113550, 1234297698757, 19809901558841, 337707109446702, 6094059760690035, 116052543892621951, 2325905946434516516, 48937614361477154273, 1078523843237914046247
OFFSET
0,3
COMMENTS
a(n) = sum of row n of A180185. - Emeric Deutsch, Sep 06 2010
REFERENCES
Jackson, D. M.; Reilly, J. W. Permutations with a prescribed number of p-runs. Ars Combinatoria 1 (1976), number 1, 297-305.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. M. Jackson and R. C. Read, A note on permutations without runs of given length, Aequationes Math. 17 (1978), no. 2-3, 336-343.
J. Riordan, Permutations without 3-sequences, Bull. Amer. Math. Soc., 51 (1945), 745-748.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*(d(n-k) + d(n-k-1)) for n>0, where d(j) = A000166(j) are the derangement numbers. - Emeric Deutsch, Sep 06 2010
EXAMPLE
a(4) = 21 because only 1234, 2341, and 4123 contain 3-sequences. - Emeric Deutsch, Sep 06 2010
MAPLE
seq(coeff(convert(series(add(m!*((t-t^3)/(1-t^3))^m, m=0..50), t, 50), polynom), t, n), n=0..25); # Pab Ter, Nov 06 2005
d[-1]:= 0: for n from 0 to 51 do d[n] := n*d[n-1]+(-1)^n end do: a:= proc(n) add(binomial(n-k, k)*(d[n-k]+d[n-k-1]), k = 0..floor((1/2)*n)) end proc: seq(a(n), n = 0..25); # Emeric Deutsch, Sep 06 2010
# third Maple program:
a:= proc(n) option remember; `if`(n<5,
[1$2, 2, 5, 21][n+1], (n-3)*a(n-1)+(3*n-6)*a(n-2)+
(4*n-12)*a(n-3)+(3*n-12)*a(n-4)+(n-5)*a(n-5))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jul 21 2019
MATHEMATICA
d[0] = 1; d[n_] := d[n] = n d[n - 1] + (-1)^n;
T[n_, k_] := If[n == 0 && k == 0, 1, If[k <= n/2, Binomial[n - k, k] d[n + 1 - k]/(n - k), 0]];
a[n_] := Sum[T[n, k], {k, 0, Quotient[n, 2]}];
a /@ Range[0, 25] (* Jean-François Alcover, May 23 2020 *)
CROSSREFS
Column k=0 of A047921.
Cf. A165960, A165961, A165962. - Isaac Lambert, Oct 07 2009
Cf. A000166, A180185. - Emeric Deutsch, Sep 06 2010
KEYWORD
nonn
EXTENSIONS
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
a(0)=1 prepended by Alois P. Heinz, Jul 21 2019
STATUS
approved
Number of permutations of length n with one 3-sequence.
(Formerly M2003 N0792)
+0
8
0, 0, 1, 2, 11, 62, 406, 3046, 25737, 242094, 2510733, 28473604, 350651588, 4661105036, 66529260545, 1014985068610, 16484495344135, 283989434253186, 5173041992087562, 99346991708245506, 2006304350543326057, 42505510227603678206, 942678881135812883321
OFFSET
1,4
COMMENTS
a(n) is also the number of successions in all permutations of [n-1] with no 3-sequences. A succession of a permutation p is a position i such that p(i+1) - p(i) = 1. Example: a(4)=2 because in 132, 213, 2*31, 31*2, 321 we have 0+0+1+1+0=2 successions (marked *). - Emeric Deutsch, Sep 07 2010
REFERENCES
Jackson, D. M.; Reilly, J. W. Permutations with a prescribed number of p-runs. Ars Combinatoria 1 (1976), no. 1, 297-305.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Riordan, Permutations without 3-sequences, Bull. Amer. Math. Soc., 51 (1945), 745-748.
FORMULA
a(n) = Sum(binomial(n-k-2,k-1)*A000166(n-k), k=1..floor((n-1)/2)). - Emeric Deutsch, Sep 07 2010
a(n) ~ (n-1)! * (1 - 4/n + 13/(2*n^2) + 29/(6*n^3) - 551/(24*n^4) - 1101/(20*n^5) + 58879/(720*n^6)). - Vaclav Kotesovec, Mar 16 2015
EXAMPLE
a(4) = 2 because we have 2341 and 4123. - Emeric Deutsch, Sep 07 2010
MAPLE
d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: sum(binomial(n-k-2, k-1)*d[n-k], k = 1 .. floor((1/2)*n-1/2)) end proc; seq(a(n), n = 1 .. 23); # Emeric Deutsch, Sep 07 2010
# second Maple program:
a:= proc(n) option remember;
`if`(n<5, -n*(n-1)*(n-2)*(n-5)/12,
(n-4) *a(n-1)+(3*n-6) *a(n-2)+(4*n-8) *a(n-3)
+(3*n-6)*a(n-4)+(n-2) *a(n-5))
end:
seq(a(n), n=1..25); # Alois P. Heinz, Jan 25 2014
MATHEMATICA
a[n_] := Sum[Binomial[n-k-2, k-1]*Subfactorial[n-k], {k, 1, (n-1)/2}]; Array[a, 23] (* Jean-François Alcover, Mar 13 2014, after Emeric Deutsch *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Max Alekseyev, Feb 20 2010
STATUS
approved
Number of permutations of length n with two 3-sequences.
(Formerly M2032 N0804)
+0
2
0, 0, 0, 1, 2, 12, 71, 481, 3708, 32028, 306723, 3228804, 37080394, 461569226, 6192527700, 89102492915, 1369014167140, 22373840093040, 387602212164321, 7095737193164187, 136885937242792752, 2775675888994318366, 59023506305591628101, 1313445236142071926488
OFFSET
1,5
REFERENCES
D. M. Jackson, J. W. Reilly, Permutations with a prescribed number of $p$-runs. Ars Combinatoria 1 (1976), no. 1, 297-305.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Riordan, Permutations without 3-sequences, Bull. Amer. Math. Soc., 51 (1945), 745-748.
MATHEMATICA
nmax = 22;
CoefficientList[Sum[((m + 2)*(m + 1)*(m + 2)!/2*(x^6*(1 - x)^4/(1 - x^3)^4) + (m + 1)*(m + 1)!*(x^4*(1 + x)*(1 - x)^3)/(1 - x^3)^3)*((x - x^3)/(1 - x^3))^m, {m, 0, nmax}]/x + O[x]^nmax, x] (* Jean-François Alcover, May 06 2024, after Tani Akinari *)
PROG
(PARI) concat([0, 0, 0], Vec(sum(m=0, 100, ((m+2)*(m+1)*(m+2)!/2*(x^6*(1-x)^4/(1-x^3)^4)+(m+1)*(m+1)!*(x^4*(1+x)*(1-x)^3)/(1-x^3)^3)*((x-x^3)/(1-x^3))^m)+O(x^100))) \\ Tani Akinari, Nov 08 2014
CROSSREFS
Cf. A047921.
KEYWORD
nonn
EXTENSIONS
More terms from Max Alekseyev, Feb 20 2010
STATUS
approved

Search completed in 0.007 seconds