[go: up one dir, main page]

login
Search: a047918 -id:a047918
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n*phi(n).
(Formerly M1568 N0611)
+10
111
1, 2, 6, 8, 20, 12, 42, 32, 54, 40, 110, 48, 156, 84, 120, 128, 272, 108, 342, 160, 252, 220, 506, 192, 500, 312, 486, 336, 812, 240, 930, 512, 660, 544, 840, 432, 1332, 684, 936, 640, 1640, 504, 1806, 880, 1080, 1012, 2162, 768, 2058, 1000
OFFSET
1,2
COMMENTS
Also Euler phi function of n^2.
For n >= 3, a(n) is also the size of the automorphism group of the dihedral group of order 2n. This automorphism group is isomorphic to the group of transformations x -> ax + b, where a, b and x are integers modulo n and a is coprime to n. Its order is n*phi(n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 18 2001
Order of metacyclic group of polynomial of degree n. - Artur Jasinski, Jan 22 2008
It appears that this sequence gives the number of permutations of 1, 2, 3, ..., n that are arithmetic progressions modulo n. - John W. Layman, Aug 27 2008
The conjecture by Layman is correct. Obviously any such permutation must have an increment that is prime to n, and almost as obvious that any such increment will work, with any starting value; hence phi(n) * n total. - Franklin T. Adams-Watters, Jun 09 2009
Consider the numbers from 1 to n^2 written line by line as an n X n square: a(n) = number of numbers that are coprime to all their horizontal and vertical immediate neighbors. - Reinhard Zumkeller, Apr 12 2011
n -> a(n) is injective: a(m) = a(n) implies m = n. - Franz Vrabec, Dec 12 2012 (See Mathematics Stack Exchange link for a proof.)
a(p) = p*(p-1) a pronic number, see A036689 and A002378. - Fred Daniel Kline, Mar 30 2015
Conjecture: All the rational numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts. - Zhi-Wei Sun, Sep 24 2015
From Jianing Song, Aug 25 2023: (Start)
a(n) is the order of the holomorph (see the Wikipedia link) of the cyclic group of order n. Note that Hol(C_n) and Aut(D_{2n}) are isomorphic unless n = 2, where D_{2n} is the dihedral group of order 2*n. See the Wordpress link.
The odd-indexed terms form a subsequence of A341298: the holomorph of an abelian group of odd order is a complete group. See Theorem 3.2, Page 618 of the W. Peremans link. (End)
REFERENCES
Peter Giblin, Primes and Programming: An Introduction to Number Theory with Computing. Cambridge: Cambridge University Press (1993) p. 116, Exercise 1.10.
J. L. Lagrange, Oeuvres, Vol. III Paris 1869.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Daniel Fischer, answer to Injectivity of the function n times the Euler Totient of n, Mathematics Stack Exchange, October 2013.
Mikhail R. Gabdullin and Vitalii V. Iudelevich, Numbers of the form kf(k), arXiv:2201.09287 [math.NT] (2022).
Dmitry Krachun and Zhi-Wei Sun, Each positive rational number has the form phi(m^2)/phi(n^2), arXiv:2001.03736 [math.HO], 2020. See also The American Mathematical Monthly (2020) Vol. 127, Issue 9, 847-849.
F. Luca and A. O. Munagi, The number of permutations which form arithmetic progressions modulo m, Annals of the Alexandru Ioan Cuza University, 2014, DOI: 10.2478/aicu-2014-0053. [Broken link]
C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.
W. Peremans, Completeness of Holomorphs, Nederl. Akad. Wetensch. Indag. Math. Proc. Ser. A, 60. (1957) 608-619.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]
Wikipedia, Holomorph.
FORMULA
Multiplicative with a(p^e) = (p-1)*p^(2e-1). - David W. Wilson, Aug 01 2001
Dirichlet g.f.: zeta(s-2)/zeta(s-1). - R. J. Mathar, Feb 09 2011
a(n) = A173557(n) * A102631(n). - R. J. Mathar, Mar 30 2011
From Wolfdieter Lang, May 12 2011: (Start)
a(n)/2 = A023896(n), n >= 2.
a(n)/2 = (1/n) * Sum_{k=1..n-1, gcd(k,n)=1} k, n >= 2 (see A023896 and A076512/A109395). (End)
a(n) = lcm(phi(n^2),n). - Enrique Pérez Herrero, May 11 2012
a(n) = phi(n^2). - Wesley Ivan Hurt, Jun 16 2013
a(n) = A009195(n) * A009262(n). - Michel Marcus, Oct 24 2013
G.f.: -x + 2*Sum_{k>=1} mu(k)*k*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, Jan 03 2017
a(n) = A082473(A327173(n)), A327172(a(n)) = n. -- Antti Karttunen, Sep 29 2019
Sum_{n>=1} 1/a(n) = 2.203856... (A065484). - Amiram Eldar, Sep 30 2019
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ c*sqrt(x) for c = Product_{p prime} (1 + 1/(p*(p - 1 + sqrt(p^2 - p)))) = 1.3651304521525857... - Charles R Greathouse IV, Mar 16 2022
a(n) = Sum_{d divides n} A001157(d)*A046692(n/d); that is, the Dirichlet convolution of sigma_2(n) and the Dirichlet inverse of sigma_1(n). - Peter Bala, Jan 26 2024
EXAMPLE
a(4) = 8 since phi(4) = 2 and 4 * 2 = 8.
a(5) = 20 since phi(5) = 4 and 5 * 4 = 20.
MAPLE
with(numtheory):a:=n->phi(n^2): seq(a(n), n=1..50); # Zerinvary Lajos, Oct 07 2007
MATHEMATICA
Table[n EulerPhi[n], {n, 100}] (* Artur Jasinski, Jan 22 2008 *)
PROG
(MuPAD) numlib::phi(n^2)$ n=1..81 // Zerinvary Lajos, May 13 2008
(Sage) [euler_phi(n^2) for n in range(1, 51)] # Zerinvary Lajos, Jun 06 2009
(Magma) [n*EulerPhi(n): n in [1..150]]; // Vincenzo Librandi, Apr 04 2011
(PARI) a(n)=n*eulerphi(n) \\ Charles R Greathouse IV, Nov 20 2012
(Haskell)
a002618 n = a000010 n * n -- Reinhard Zumkeller, Dec 21 2012
(Python)
from sympy import totient as phi
def a(n): return n*phi(n)
print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Mar 16 2022
CROSSREFS
First column of A047916.
Cf. A002619, A047918, A000010, A053650, A053191, A053192, A036689, A058161, A009262, A082473 (same terms, sorted into ascending order), A256545, A327172 (a left inverse), A327173, A065484.
Subsequence of A323333.
KEYWORD
nonn,easy,nice,mult,look
EXTENSIONS
Better description from Labos Elemer, Feb 18 2000
STATUS
approved
Number of 2-colored patterns on an n X n board.
(Formerly M0887 N0336)
+10
15
1, 1, 2, 3, 8, 24, 108, 640, 4492, 36336, 329900, 3326788, 36846288, 444790512, 5811886656, 81729688428, 1230752346368, 19760413251956, 336967037143596, 6082255029733168, 115852476579940152, 2322315553428424200, 48869596859895986108
OFFSET
1,3
COMMENTS
Also number of orbits in the set of circular permutations (up to rotation) under cyclic permutation of the elements. - Michael Steyer, Oct 06 2001
Moser shows that (1/n^2)*Sum_{d|n} k^d*phi(n/d)^2*(n/d)^d*d! is an integer. Here we have k=1. - Michel Marcus, Nov 02 2012
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
K. Yordzhev, On the cardinality of a factor set in the symmetric group. Asian-European Journal of Mathematics, Vol. 7, No. 2 (2014) 1450027, doi: 10.1142/S1793557114500272, ISSN:1793-5571, E-ISSN:1793-7183, Zbl 1298.05035.
LINKS
C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.
W. O. J. Moser, A (modest) generalization of the theorems of Wilson and Fermat, Canad. Math. Bull. 33(1990), pp. 253-256.
András Szilárd, A combinatorial generalization of Wilson's theorem, Australasian Journal of Combinatorics, Volume 49 (2011), Pages 265-272. See Theorem 3.c p. 269.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]
A. Vella, Pattern avoidance in permutations: linear and cyclic orders, Electron. J. Combin. 9 (2002/03), no. 2, #R18, 43 pp.
K. Yordzhev, On the cardinality of a factor set in the symmetric group, arXiv:1410.8408 [math.CO], 2014.
Saeed Zakeri, Cyclic Permutations: Degrees and Combinatorial Types, arXiv:1909.03300 [math.DS], 2019. See Table 2 p. 10.
FORMULA
a(n) = Sum_{k|n} u(n, k)/(nk), where u(n, k) = A047918(n, k).
a(n) = (1/n^2)*Sum_{d|n} phi(d)^2*(n/d)!*d^(n/d), where phi is Euler's totient function (A000010). - Emeric Deutsch, Aug 23 2005
From Richard L. Ollerton, May 09 2021: (Start)
Let A(n,k) = (1/n^2)*Sum_{d|n} k^d*phi(n/d)^2*(n/d)^d*d!, then:
A(n,k) = (1/n^2)*Sum_{i=1..n} k^gcd(n,i)*phi(n/gcd(n,i))*(n/gcd(n,i))^gcd(n,i)*gcd(n,i)!.
A(n,k) = (1/n^2)*Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))^2*(gcd(n,i))^(n/gcd(n,i))*(n/gcd(n,i))!.
a(n) = A(n,1). (End)
EXAMPLE
n=6: {(123456)}, {(135462), (246513), (351624)} and {(124635), (235146), (346251), (451362), (562413), (613524)} are 3 of the 24 orbits, consisting of 1, 3 and 6 permutations, respectively.
MAPLE
with(numtheory): a:=proc(n) local div: div:=divisors(n): sum(phi(div[j])^2*(n/div[j])!*div[j]^(n/div[j]), j=1..tau(n))/n^2 end: seq(a(n), n=1..23); # Emeric Deutsch, Aug 23 2005
MATHEMATICA
a[n_] := EulerPhi[#]^2*(n/#)!*#^(n/#)/n^2 & /@ Divisors[n] // Total; a /@ Range[23] (* Jean-François Alcover, Jul 11 2011, after Emeric Deutsch *)
PROG
(PARI) a(n)={sumdiv(n, d, eulerphi(n/d)^2*d!*(n/d)^d)/n^2} \\ Andrew Howroyd, Sep 09 2018
(Python)
from sympy import totient, factorial, divisors
def A002619(n): return sum(totient(m:=n//d)**2*factorial(d)*m**d for d in divisors(n, generator=True))//n**2 # Chai Wah Wu, Nov 07 2022
CROSSREFS
Cf. A000010.
Cf. A000939, A000940, A089066, A262480, A275527 (other classes of permutations under various symmetries).
KEYWORD
nonn,nice,easy
STATUS
approved
Triangular array read by rows: a(n,k) = phi(n/k)*(n/k)^k*k! if k|n else 0 (1<=k<=n).
+10
8
1, 2, 2, 6, 0, 6, 8, 8, 0, 24, 20, 0, 0, 0, 120, 12, 36, 48, 0, 0, 720, 42, 0, 0, 0, 0, 0, 5040, 32, 64, 0, 384, 0, 0, 0, 40320, 54, 0, 324, 0, 0, 0, 0, 0, 362880, 40, 200, 0, 0, 3840, 0, 0, 0, 0, 3628800, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916800, 48, 144
OFFSET
1,2
COMMENTS
T(n,k) = A054523(n,k) * A010766(n,k)^A002260(n,k) * A166350(n,k). - Reinhard Zumkeller, Jan 20 2014
REFERENCES
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
LINKS
C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]
EXAMPLE
1; 2,2; 6,0,6; 8,8,0,24; 20,0,0,0,120; 12,36,48,0,0,720; ...
MATHEMATICA
a[n_, k_] := If[Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, May 04 2012 *)
PROG
(Haskell)
import Data.List (zipWith4)
a047916 n k = a047916_tabl !! (n-1) !! (k-1)
a047916_row n = a047916_tabl !! (n-1)
a047916_tabl = zipWith4 (zipWith4 (\x u v w -> x * v ^ u * w))
a054523_tabl a002260_tabl a010766_tabl a166350_tabl
-- Reinhard Zumkeller, Jan 20 2014
(PARI) a(n, k)=if(n%k, 0, eulerphi(n/k)*(n/k)^k*k!) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
A064649 gives the row sums.
Cf. A002618 (left edge), A000142 (right edge), A049820 (zeros per row), A000005 (nonzeros per row).
See also A247917, A047918, A047919.
KEYWORD
nonn,tabl,nice,easy
STATUS
approved
Row sums of the table A047916.
+10
4
1, 4, 12, 40, 140, 816, 5082, 40800, 363258, 3632880, 39916910, 479052528, 6227020956, 87178936992, 1307674429440, 20922800222848, 355687428096272, 6402373892575992, 121645100408832342, 2432902011892837920
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} phi(n/d)*(n/d)^d*d!. - Michel Marcus, Mar 06 2016
MAPLE
A064649 := proc(n) local d, s; s := 0; for d in divisors(n) do s := s + phi(n/d)*(n/d)^d*d!; od; RETURN(s); end;
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[n/#]*(n/#)^#*#!&]; Array[a, 20] (* Jean-François Alcover, Mar 06 2016 *)
PROG
(PARI) { for (n=1, 100, a=0; v=divisors(n); for (i=1, length(v), d=v[i]; a+=eulerphi(n/d)*(n/d)^d*d!); write("b064649.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 21 2009
(PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*(n/d)^d*d!); \\ Michel Marcus, Mar 06 2016
(Haskell)
a064649 = sum . a047916_row -- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
Also n*A061417[n]. Cf. A047918, A002619.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 04 2001
STATUS
approved
Number of orbits in A002619 consisting of n permutations.
+10
4
1, 0, 0, 1, 4, 18, 102, 624, 4476, 36248, 329890, 3326054, 36846276, 444783906, 5811885808, 81729607680, 1230752346352, 19760412095328, 336967037143578, 6082255011151724, 115852476579789984, 2322315553090615850, 48869596859895986086, 1077167364116800207968
OFFSET
1,5
COMMENTS
Also, the number of aperiodic oriented cycles on n nodes up to rotation of the nodes. See A324513 for illustrations of aperiodic undirected cycles. - Andrew Howroyd, Aug 16 2019
LINKS
FORMULA
a(n) = Sum_{k|n} mu(n/k)*phi(n/k)*(n/k)^k*k!/n^2 = A047918(n, n)/n^2.
EXAMPLE
n=6: The orbit {(124635)(235146)(346251)(451362)(562413)(613524)} consists of 6 single permutations.
MATHEMATICA
a[n_] := Sum[ MoebiusMu[n/k] * EulerPhi[n/k] * (n/k)^k * (k!/n^2), {k, Divisors[n]}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Jun 26 2012, after PARI *)
PROG
(PARI) for(n=1, 23, print(sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2)))
(PARI) { for (n=1, 100, a=sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2); write("b064852.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009
CROSSREFS
KEYWORD
nice,nonn
AUTHOR
Michael Steyer (m.steyer(AT)osram.de), Oct 06 2001
EXTENSIONS
Corrected and extended by Jason Earls and Vladeta Jovovic, Oct 08 2001
STATUS
approved
Triangular array read by rows: a(n,k) = Sum_{d|k} mu(d)*U(n,k/d)/n if k|n else 0, where U(n,k) = A047916(n,k) (1<=k<=n).
+10
2
1, 1, 0, 2, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 20, 2, 4, 6, 0, 0, 108, 6, 0, 0, 0, 0, 0, 714, 4, 4, 0, 40, 0, 0, 0, 4992, 6, 0, 30, 0, 0, 0, 0, 0, 40284, 4, 16, 0, 0, 380, 0, 0, 0, 0, 362480, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628790, 4, 8, 60, 312, 0, 3768, 0, 0, 0, 0
OFFSET
1,4
REFERENCES
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
LINKS
C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]
MATHEMATICA
U[n_, k_] := If[Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; a[n_, k_] := Sum[If[Divisible[n, k], MoebiusMu[d]*U[n, k/d], 0], {d, Divisors[k]}]; row[n_] := Table[a[n, k], {k, 1, n}]/n; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Nov 21 2012, after A047918 *)
PROG
(Haskell)
a047919 n k = a047919_tabl !! (n-1) !! (k-1)
a047919_row n = a047919_tabl !! (n-1)
a047919_tabl = zipWith (zipWith div) a047918_tabl a002024_tabl
-- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
Divide n-th row of array A047918 by n.
Cf. A002024.
KEYWORD
nonn,tabl,nice,easy
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Mar 19 2014
STATUS
approved

Search completed in 0.012 seconds