Displaying 1-7 of 7 results found.
page
1
Theta series of 15-dimensional lattice Kappa_15.
+10
7
1, 0, 1746, 21456, 147150, 607536, 2036334, 5410800, 13282866, 27563184, 56679732, 102040272, 184563384, 302221728, 504866340, 763016400, 1202127174, 1728479808, 2575653198, 3561176016, 5127122304, 6797385072, 9531403128, 12329627616, 16701654486, 21199654080
COMMENTS
Theta series is an element of the space of modular forms on Gamma_1(48) with Kronecker character 12 in modulus 48, weight 15/2, and dimension 58 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
EXAMPLE
G.f. = 1 + 1746*q^4 + 21456*q^6 + 147150*q^8 + ...
PROG
(Magma)
prec := 70;
S := SymmetricMatrix([4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 1, 0, 1, -1, 1, -1, 1, 4, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 0, 0, -1, 4]);
ls := [1, 0, 1746, 21456, 147150, 607536, 2036334, 5410800, 13282866, 27563184, 56679732, 102040272, 184563384, 302221728, 504866340, 763016400, 1202127174, 1728479808, 2575653198, 3561176016, 5127122304, 6797385072, 9531403128, 12329627616, 16701654486, 21199654080, 28230179220, 34817427648, 45678519396, 55628679312, 71267532432, 85814825328, 108809427618, 128313065808, 161435864196, 188866349856, 233000967122, 271038881664, 332652360024, 380052936000, 464058384948, 528207272064, 634933480440, 719891109360, 862226645076, 963402396336, 1151630548200, 1283383148256, 1511712192624, 1682610190272, 1980149372586, 2173335020640, 2553938906832, 2802302452080, 3252053197962, 3565107859680, 4134281599332, 4478370612624];
L := LatticeWithGram(S);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
Coefficients(&+[ls[i] * B[i] : i in [1..58]]);
Theta series of 16-dimensional lattice Kappa_16.
+10
7
1, 0, 2772, 42624, 335052, 1545984, 5698860, 16297344, 42785244, 94440960, 204094296, 385391232, 730053060, 1240934400, 2151268128, 3374469504, 5476016700, 8115545088, 12477938100, 17677480320, 26111897640, 35570481408, 50909418000, 67336722432, 93433877268
COMMENTS
Theta series is an element of the space of modular forms on Gamma_0(12) of weight 8 and dimension 17 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
EXAMPLE
G.f. = 1 + 2772*q^4 + 42624*q^6 + ...
PROG
(Magma)
prec := 40;
S := SymmetricMatrix([4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 1, 0, 1, -1, 1, -1, 1, 4, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 0, 0, -1, 4, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, -1, 4]);
L := LatticeWithGram(S);
T<q> := ThetaSeries(L, 32);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
Coefficients(&+[Coefficients(T)[2*i-1]*B[i] : i in [1..17]]);
Theta series of 18-dimensional lattice Kappa_18.
+10
7
1, 0, 6480, 157680, 1596510, 9488016, 40681440, 140492880, 406046520, 1047312720, 2426695200, 5208293520, 10421250750, 19873356480, 35716191840, 62355291696, 104234541390, 169488573120, 267064691760, 413777075760, 619573504896, 920235334320, 1331744781600
COMMENTS
Theta series is an element of the space of modular forms on Gamma_1(3) with Kronecker character -3, weight 9, and dimension 4 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
EXAMPLE
G.f. = 1 + 6480*q^4 + 157680*q^6 + ...
PROG
(Magma)
prec := 20;
ls := [4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 0, -1, 0, 0, 1, 1, 0, 1, 1, -1, 0, 0, 1, -1, 4, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, 4];
S := SymmetricMatrix(ls);
L := LatticeWithGram(S);
T<q> := ThetaSeries(L, 8);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
Coefficients(&+[Coefficients(T)[2*i-1]*B[i] :i in [1..4]]);
Theta series of 19-dimensional lattice Kappa_19.
+10
7
1, 0, 9396, 284528, 3309660, 21996036, 103632480, 384538752, 1195104618, 3253783500, 7971340896, 17905302720, 37530681590, 74139276672, 139067432280, 250102136592, 433070833500, 724358442744, 1178016364548, 1866143480400, 2883345017508, 4367172766500
COMMENTS
Theta series is an element of the space of modular forms on Gamma_0(12) of weight 19/2 and dimension 19 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
EXAMPLE
G.f. = 1 + 9396*q^4 + 284528*q^6 + ...
PROG
(Magma)
prec := 30;
coeffs := [1, 0, 9396, 284528, 3309660, 21996036, 103632480, 384538752, 1195104618, 3253783500, 7971340896, 17905302720, 37530681590, 74139276672, 139067432280, 250102136592, 433070833500, 724358442744, 1178016364548];
ls := [4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 0, -1, 0, 0, 1, 1, 0, 1, 1, -1, 0, 0, 1, -1, 4, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, 4, 1, 0, -1, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 1, 4];
S := SymmetricMatrix(ls);
L := LatticeWithGram(S);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
Coefficients(&+[coeffs[i]*B[i] :i in [1..19]]);
Theta series of 20-dimensional lattice Kappa_20.
+10
7
1, 0, 15390, 575160, 7712820, 57281580, 296150580, 1184012640, 3944197800, 11364334080, 29395745478, 69157229760, 151652810580, 311116423500, 607158951120, 1127694969072, 2020055770530, 3478103852940, 5829999042420, 9467119804680, 15046034533560
COMMENTS
Theta series is an element of the space of modular forms on Gamma_0(9) of weight 10 and dimension 11 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
EXAMPLE
G.f. = 1 + 15390*q^4 + 575160*q^6 + ...
PROG
(Magma)
prec := 40;
ls := [4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 0, -1, 0, 0, 1, 1, 0, 1, 1, -1, 0, 0, 1, -1, 4, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, 4, 1, 0, -1, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 0, 1, 0, 4];
S := SymmetricMatrix(ls);
L := LatticeWithGram(S);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
coeffs := [1, 0, 15390, 575160, 7712820, 57281580, 296150580, 1184012640, 3944197800, 11364334080, 29395745478];
Coefficients(&+[coeffs[i]*B[i] :i in [1..11]]);
Theta series of 17-dimensional lattice Kappa_17.
+10
6
1, 0, 4266, 81792, 737862, 3809280, 15406210, 47505792, 133390290, 312588288, 711232812, 1408787328, 2789963820, 4931371008, 8870944884, 14417119872, 24144502662, 36878456832, 58393537998, 84926534016
COMMENTS
Theta series is an element of the space of modular forms on Gamma_1(48) with Kronecker character 12 in modulus 48, weight 17/2, and dimension 66 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
EXAMPLE
G.f. = 1 + 4266*q^4 + 81792*q^6 + ...
PROG
(Magma)
prec := 10;
S := SymmetricMatrix([4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 1, 0, 1, -1, 1, -1, 1, 4, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 0, 0, -1, 4, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, -1, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 1, -1, 1, 0, 1, -1, 4]);
L := LatticeWithGram(S);
T<q> := ThetaSeries(L, 2*prec);
[Coefficients(T)[2*i-1] : i in [1..prec]];
Theta series of lattice Kappa_8.
+10
1
1, 0, 132, 192, 828, 1152, 2796, 2880, 6828, 5376, 14904, 10944, 20772, 18432, 40224, 25920, 53964, 41472, 76452, 58176, 107784, 69504, 156816, 101376, 163284, 131328, 259032, 147072, 295200, 206208, 357480, 250560, 432780, 269568, 576072, 365184, 555804, 426240
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 161.
EXAMPLE
G.f. = 1 + 132*q^4 + 192*q^6 + ...
PROG
(Sage)
L = [1, 0, 132, 192, 828, 1152, 2796, 2880, 6828, 5376]
M = ModularForms(Gamma0(12), 4)
bases = [_.q_expansion(35) for _ in M.integral_basis()]
f = sum(x*y for (x, y) in zip(bases, L)); list(f) # Andy Huchala, Jul 23 2021
Search completed in 0.009 seconds
|