[go: up one dir, main page]

login
Search: a047628 -id:a047628
     Sort: relevance | references | number | modified | created      Format: long | short | data
Theta series of 15-dimensional lattice Kappa_15.
+10
7
1, 0, 1746, 21456, 147150, 607536, 2036334, 5410800, 13282866, 27563184, 56679732, 102040272, 184563384, 302221728, 504866340, 763016400, 1202127174, 1728479808, 2575653198, 3561176016, 5127122304, 6797385072, 9531403128, 12329627616, 16701654486, 21199654080
OFFSET
0,3
COMMENTS
Theta series is an element of the space of modular forms on Gamma_1(48) with Kronecker character 12 in modulus 48, weight 15/2, and dimension 58 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice.
EXAMPLE
G.f. = 1 + 1746*q^4 + 21456*q^6 + 147150*q^8 + ...
PROG
(Magma)
prec := 70;
S := SymmetricMatrix([4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 1, 0, 1, -1, 1, -1, 1, 4, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 0, 0, -1, 4]);
ls := [1, 0, 1746, 21456, 147150, 607536, 2036334, 5410800, 13282866, 27563184, 56679732, 102040272, 184563384, 302221728, 504866340, 763016400, 1202127174, 1728479808, 2575653198, 3561176016, 5127122304, 6797385072, 9531403128, 12329627616, 16701654486, 21199654080, 28230179220, 34817427648, 45678519396, 55628679312, 71267532432, 85814825328, 108809427618, 128313065808, 161435864196, 188866349856, 233000967122, 271038881664, 332652360024, 380052936000, 464058384948, 528207272064, 634933480440, 719891109360, 862226645076, 963402396336, 1151630548200, 1283383148256, 1511712192624, 1682610190272, 1980149372586, 2173335020640, 2553938906832, 2802302452080, 3252053197962, 3565107859680, 4134281599332, 4478370612624];
L := LatticeWithGram(S);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
Coefficients(&+[ls[i] * B[i] : i in [1..58]]);
KEYWORD
nonn
AUTHOR
Andy Huchala, May 07 2023
STATUS
approved
Theta series of 16-dimensional lattice Kappa_16.
+10
7
1, 0, 2772, 42624, 335052, 1545984, 5698860, 16297344, 42785244, 94440960, 204094296, 385391232, 730053060, 1240934400, 2151268128, 3374469504, 5476016700, 8115545088, 12477938100, 17677480320, 26111897640, 35570481408, 50909418000, 67336722432, 93433877268
OFFSET
0,3
COMMENTS
Theta series is an element of the space of modular forms on Gamma_0(12) of weight 8 and dimension 17 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice.
EXAMPLE
G.f. = 1 + 2772*q^4 + 42624*q^6 + ...
PROG
(Magma)
prec := 40;
S := SymmetricMatrix([4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 1, 0, 1, -1, 1, -1, 1, 4, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 0, 0, -1, 4, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, -1, 4]);
L := LatticeWithGram(S);
T<q> := ThetaSeries(L, 32);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
Coefficients(&+[Coefficients(T)[2*i-1]*B[i] : i in [1..17]]);
KEYWORD
nonn
AUTHOR
Andy Huchala, May 07 2023
STATUS
approved
Theta series of 18-dimensional lattice Kappa_18.
+10
7
1, 0, 6480, 157680, 1596510, 9488016, 40681440, 140492880, 406046520, 1047312720, 2426695200, 5208293520, 10421250750, 19873356480, 35716191840, 62355291696, 104234541390, 169488573120, 267064691760, 413777075760, 619573504896, 920235334320, 1331744781600
OFFSET
0,3
COMMENTS
Theta series is an element of the space of modular forms on Gamma_1(3) with Kronecker character -3, weight 9, and dimension 4 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice.
EXAMPLE
G.f. = 1 + 6480*q^4 + 157680*q^6 + ...
PROG
(Magma)
prec := 20;
ls := [4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 0, -1, 0, 0, 1, 1, 0, 1, 1, -1, 0, 0, 1, -1, 4, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, 4];
S := SymmetricMatrix(ls);
L := LatticeWithGram(S);
T<q> := ThetaSeries(L, 8);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
Coefficients(&+[Coefficients(T)[2*i-1]*B[i] :i in [1..4]]);
KEYWORD
nonn
AUTHOR
Andy Huchala, May 08 2023
STATUS
approved
Theta series of 19-dimensional lattice Kappa_19.
+10
7
1, 0, 9396, 284528, 3309660, 21996036, 103632480, 384538752, 1195104618, 3253783500, 7971340896, 17905302720, 37530681590, 74139276672, 139067432280, 250102136592, 433070833500, 724358442744, 1178016364548, 1866143480400, 2883345017508, 4367172766500
OFFSET
0,3
COMMENTS
Theta series is an element of the space of modular forms on Gamma_0(12) of weight 19/2 and dimension 19 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice.
EXAMPLE
G.f. = 1 + 9396*q^4 + 284528*q^6 + ...
PROG
(Magma)
prec := 30;
coeffs := [1, 0, 9396, 284528, 3309660, 21996036, 103632480, 384538752, 1195104618, 3253783500, 7971340896, 17905302720, 37530681590, 74139276672, 139067432280, 250102136592, 433070833500, 724358442744, 1178016364548];
ls := [4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 0, -1, 0, 0, 1, 1, 0, 1, 1, -1, 0, 0, 1, -1, 4, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, 4, 1, 0, -1, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 1, 4];
S := SymmetricMatrix(ls);
L := LatticeWithGram(S);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
Coefficients(&+[coeffs[i]*B[i] :i in [1..19]]);
KEYWORD
nonn
AUTHOR
Andy Huchala, May 08 2023
STATUS
approved
Theta series of 20-dimensional lattice Kappa_20.
+10
7
1, 0, 15390, 575160, 7712820, 57281580, 296150580, 1184012640, 3944197800, 11364334080, 29395745478, 69157229760, 151652810580, 311116423500, 607158951120, 1127694969072, 2020055770530, 3478103852940, 5829999042420, 9467119804680, 15046034533560
OFFSET
0,3
COMMENTS
Theta series is an element of the space of modular forms on Gamma_0(9) of weight 10 and dimension 11 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice.
EXAMPLE
G.f. = 1 + 15390*q^4 + 575160*q^6 + ...
PROG
(Magma)
prec := 40;
ls := [4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 0, -1, 0, 0, 1, 1, 0, 1, 1, -1, 0, 0, 1, -1, 4, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, 4, 1, 0, -1, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 0, 1, 0, 4];
S := SymmetricMatrix(ls);
L := LatticeWithGram(S);
M := ThetaSeriesModularFormSpace(L);
B := Basis(M, prec);
coeffs := [1, 0, 15390, 575160, 7712820, 57281580, 296150580, 1184012640, 3944197800, 11364334080, 29395745478];
Coefficients(&+[coeffs[i]*B[i] :i in [1..11]]);
KEYWORD
nonn
AUTHOR
Andy Huchala, May 08 2023
STATUS
approved
Theta series of 17-dimensional lattice Kappa_17.
+10
6
1, 0, 4266, 81792, 737862, 3809280, 15406210, 47505792, 133390290, 312588288, 711232812, 1408787328, 2789963820, 4931371008, 8870944884, 14417119872, 24144502662, 36878456832, 58393537998, 84926534016
OFFSET
0,3
COMMENTS
Theta series is an element of the space of modular forms on Gamma_1(48) with Kronecker character 12 in modulus 48, weight 17/2, and dimension 66 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Chap. 6.
LINKS
EXAMPLE
G.f. = 1 + 4266*q^4 + 81792*q^6 + ...
PROG
(Magma)
prec := 10;
S := SymmetricMatrix([4, 2, 4, 0, -2, 4, 0, -2, 0, 4, 0, 0, -2, 0, 4, -2, -2, 0, 0, 0, 4, -2, -1, 1, 0, 0, 0, 4, -2, -1, 0, -1, 1, 2, 2, 4, -2, -2, 0, 1, 1, 2, 2, 2, 4, -2, 0, -2, 0, 1, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, -2, 0, -1, -1, -2, 4, -2, -1, 0, 0, 0, 1, 1, 1, 1, 1, -2, 4, 0, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 4, 0, 0, 0, 0, 0, 0, 1, 0, 1, -1, 1, -1, 1, 4, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 0, 0, -1, 4, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, -1, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 1, -1, 1, 0, 1, -1, 4]);
L := LatticeWithGram(S);
T<q> := ThetaSeries(L, 2*prec);
[Coefficients(T)[2*i-1] : i in [1..prec]];
KEYWORD
nonn
AUTHOR
Andy Huchala, May 07 2023
STATUS
approved
Theta series of lattice Kappa_8.
+10
1
1, 0, 132, 192, 828, 1152, 2796, 2880, 6828, 5376, 14904, 10944, 20772, 18432, 40224, 25920, 53964, 41472, 76452, 58176, 107784, 69504, 156816, 101376, 163284, 131328, 259032, 147072, 295200, 206208, 357480, 250560, 432780, 269568, 576072, 365184, 555804, 426240
OFFSET
0,3
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 161.
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice
EXAMPLE
G.f. = 1 + 132*q^4 + 192*q^6 + ...
PROG
(Sage)
L = [1, 0, 132, 192, 828, 1152, 2796, 2880, 6828, 5376]
M = ModularForms(Gamma0(12), 4)
bases = [_.q_expansion(35) for _ in M.integral_basis()]
f = sum(x*y for (x, y) in zip(bases, L)); list(f) # Andy Huchala, Jul 23 2021
CROSSREFS
Cf. A015236 (K_7), A015233 (K_9), A015232 (K_10), A015229 (K_11), A004010 (K_12), A029897 (K_13), A047628 (K_14).
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Feb 26 2020
STATUS
approved

Search completed in 0.009 seconds