Displaying 1-10 of 22 results found.
Primes with first digit 5.
+10
29
5, 53, 59, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261
MATHEMATICA
Select[Table[Prime[n], {n, 5300}], First[IntegerDigits[#]]==5 &] (* Vincenzo Librandi, Aug 08 2014 *)
PROG
(Magma) [p: p in PrimesUpTo(5300) | Intseq(p)[#Intseq(p)] eq 5]; // Vincenzo Librandi, Aug 08 2014
CROSSREFS
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509
Primes with first digit 1.
+10
27
11, 13, 17, 19, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151
COMMENTS
Also primes with all divisors starting with digit 1. Complement of A206288 (nonprime numbers with all divisors starting with digit 1) with respect to A206287 (numbers with all divisors starting with digit 1). - Jaroslav Krizek, Mar 04 2012
Cohen and Katz show that the set of primes with first digit 1 has no natural density, but has supernatural/Dirichlet density log_{10} (2) ~= 0.3, the primes with first digit 2 have (supernatural) density log_{10} (3/2) ~= 0.176, ... and the primes with first digit 9 have density log_{10} (10/9) ~= 0.046. This would seem to explain the first digit phenomenon. Note that sum_{k = 1}^9 log_{10} (k+1)/k = 1. - Gary McGuire, Dec 22 2004
Lower density is 1/9, upper density is 5/9. The Dirichlet density, if it exists, is always between the lower and upper density (as it does and is in this case). - Charles R Greathouse IV, Sep 26 2022
MATHEMATICA
Select[Table[Prime[n], {n, 500}], First[IntegerDigits[#]] == 1 &]
Flatten[Table[Prime[Range[PrimePi[10^n] + 1, PrimePi[2 * 10^n]]], {n, 3}]] (* Alonso del Arte, Jul 18 2014 *)
PROG
(Magma) [p: p in PrimesUpTo(10^4) | IsOne(Intseq(p)[#Intseq(p)])]; // Bruno Berselli, Jul 19 2014
(PARI) list(lim)=my(v=[]); for(d=1, #digits(lim\=1)-1, v=concat(v, primes([10^d, min(lim, 2*10^d-1)]))); v \\ Charles R Greathouse IV, Sep 26 2022
Primes with first digit 2.
+10
24
2, 23, 29, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221
FORMULA
See A045707 for comments on density of these sequences.
MATHEMATICA
Select[Table[Prime[n], {n, 3000}], First[IntegerDigits[#]]==2 &] (* Vincenzo Librandi, Aug 08 2014 *)
PROG
(Haskell)
a045708 n = a045708_list !! (n-1)
a045708_list = filter ((== 2) . a000030) a000040_list
(Magma) [p: p in PrimesUpTo(2300) | Intseq(p)[#Intseq(p)] eq 2]; // Vincenzo Librandi, Aug 08 2014
(Python)
from sympy import isprime
def agen(limit=float('inf')):
yield 2
digits, adder = 1, 20
while True:
for i in range(1, 10**digits, 2):
test = adder + i
if test > limit: return
if isprime(test): yield test
digits, adder = digits+1, adder*10
agento = lambda lim: agen(limit=lim)
CROSSREFS
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509
Number of primes less than 10^n with initial digit 1.
+10
24
0, 4, 25, 160, 1193, 9585, 80020, 686048, 6003530, 53378283, 480532488, 4369582734, 40063566855, 369893939287, 3435376839800, 32069022099022, 300694113015105, 2830466318006780, 26735673312004455, 253315661161665338, 2406763761677705769, 22923886160712831134, 218839439542390117580
EXAMPLE
a(2)=4 because there are 4 primes up to 10^2 whose initial digit is 1 (11, 13, 17 and 19).
MATHEMATICA
f[n_] := f[n] = PrimePi[2*10^n] - PrimePi[10^n] + f[n - 1]; f[0] = 0; Table[ f[n], {n, 0, 13}]
CROSSREFS
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509
Primes with first digit 3.
+10
23
3, 31, 37, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229
MATHEMATICA
Select[Table[Prime[n], {n, 4000}], First[IntegerDigits[#]]==3 &] (* Vincenzo Librandi, Aug 08 2014 *)
PROG
(PARI) isok(n) = isprime(n) && (digits(n, 10)[1] == 3) \\ Michel Marcus, Jun 08 2013
(Magma) [p: p in PrimesUpTo(3300) | Intseq(p)[#Intseq(p)] eq 3]; // Vincenzo Librandi, Aug 08 2014
CROSSREFS
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509
Number of primes less than 10^n with initial digit 9.
+10
23
0, 1, 15, 127, 1006, 8230, 70320, 614821, 5453140, 48982456, 444608278, 4070532710, 37535715441, 348245215460, 3247889171908, 30429496751905, 286235215995588, 2702000272361599, 25586688305447928, 242978340446949438, 2313264023790027111, 22074118786158858975
EXAMPLE
a(2) = 1 because there is 1 prime less than 100 whose initial digit is 9, i.e., 97.
MATHEMATICA
f[n_] := f[n] = PrimePi[10^(n + 1)] - PrimePi[9*10^n] + f[n - 1]; f[0] = 0; Table[f[n], {n, 0, 12}]
CROSSREFS
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509
Number of primes less than 10^n with initial digit 8.
+10
23
0, 2, 17, 127, 1003, 8326, 71038, 618610, 5481646, 49221187, 446590932, 4087194991, 37677478288, 349465615584, 3258501713644, 30522628848972, 287059041039078, 2709339704446862, 25652489700275636, 243571629996128384, 2318640708958531064, 22123070798400775157
EXAMPLE
a(2)=2 because there are 2 primes up to 10^2 whose initial digit is 8 (namely 83 and 89).
MATHEMATICA
f[n_] := f[n] = PrimePi[9*10^n] - PrimePi[8*10^n] + f[n - 1]; f[0] = 0; Table[ f[n], {n, 0, 12}]
CROSSREFS
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509
Number of primes less than 10^n with initial digit 7.
+10
23
1, 4, 18, 125, 1027, 8435, 71564, 622882, 5516130, 49495432, 448855139, 4106164356, 37838546363, 350849788546, 3270531245684, 30628143485953, 287992070079777, 2717649138419586, 25726964404879666, 244242934202964444, 2324722877951987037, 22178433287546997612
EXAMPLE
a(2)=4 because there are 4 primes up to 10^2 whose initial digit is 7 (namely 7, 71, 73 and 79).
MATHEMATICA
f[n_] := f[n] = PrimePi[8*10^n] - PrimePi[7*10^n] + f[n - 1]; f[0] = 1; Table[ f[n], {n, 0, 12}]
CROSSREFS
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509
Number of primes less than 10^n with initial digit 6.
+10
23
0, 2, 18, 135, 1013, 8458, 72257, 628206, 5556434, 49815418, 451476802, 4128049326, 38024311091, 352446754137, 3284400373590, 30749731897370, 289066731934716, 2727216210298152, 25812680778645432, 245015325044029789, 2331718909954888809, 22242097596092999144
EXAMPLE
a(2)=2 because there are 2 primes up to 10^2 whose initial digit is 2 (namely 61 and 67).
MATHEMATICA
f[n_] := f[n] = PrimePi[7*10^n] - PrimePi[6*10^n] + f[n - 1]; f[0] = 0; Table[ f[n], {n, 0, 12}]
CROSSREFS
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509
Number of primes less than 10^n with initial digit 5.
+10
23
1, 3, 17, 131, 1055, 8615, 72951, 633932, 5602768, 50193913, 454577490, 4153943134, 38243708524, 354330372215, 3300752009165, 30892997367352, 290332329192655, 2738477783884855, 25913537508233527, 245923809778144431, 2339944887042508496, 22316931815316988517
EXAMPLE
a(2)=3 because there are 3 primes up to 10^2 whose initial digit is 5 (namely 5, 53 and 59).
MATHEMATICA
f[n_] := f[n] = PrimePi[6*10^n] - PrimePi[5*10^n] + f[n - 1]; f[0] = 1; Table[ f[n], {n, 0, 13}]
CROSSREFS
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509
Search completed in 0.019 seconds
|