[go: up one dir, main page]

login
Search: a028901 -id:a028901
     Sort: relevance | references | number | modified | created      Format: long | short | data
Let n = 10*x + y where 0 <= y <= 9, x >= 0. Then a(n) = 6*x + y.
+10
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 42, 43, 44, 45, 46, 47
OFFSET
0,3
LINKS
FORMULA
G.f.: -x*(3*x^9 -x^8 -x^7 -x^6 -x^5 -x^4 -x^3 -x^2 -x -1) / ((x -1)^2*(x +1)*(x^4 -x^3 +x^2 -x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Jun 24 2014
a(n) = n - 4*floor(n/10). [Bruno Berselli, Jun 24 2014]
a(n) = a(n-1) + a(n-10) - a(n-11) for n > 10. - Chai Wah Wu, Apr 25 2017
MAPLE
A081597:=n->n-4*floor(n/10): seq(A081597(n), n=0..150); # Wesley Ivan Hurt, Apr 25 2017
MATHEMATICA
CoefficientList[Series[-x (3 x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1)/((x - 1)^2 (x + 1) (x^4 - x^3 + x^2 - x + 1) (x^4 + x^3 + x^2 + x + 1)), {x, 0, 150}], x] (* Vincenzo Librandi, Jun 25 2014 *)
PROG
(PARI) my(n, x, y); vector(200, n, y=(n-1)%10; x=(n-1-y)\10; 6*x+y) \\ Colin Barker, Jun 24 2014
(Magma) k:=6; [n-(10-k)*Floor(n/10): n in [0..10]]; // Bruno Berselli, Jun 24 2014
CROSSREFS
Cf. A081502. Different from A028901.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 22 2003
STATUS
approved
Triangular array read by rows: T(n,k) = k*floor(n/10) + n mod 10, 0<=k<=n.
+10
2
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 3, 4, 5, 6, 7, 8, 9, 10, 11
OFFSET
0,4
COMMENTS
A010879(n)=T(n,0);
A076314(0)=T(0,0), A076314(n)=T(n,1) for n>0;
A028897(n)=T(n,n) for n<=1, A028897(n)=T(n,2) for n>1;
A028898(n)=T(n,n) for n<=2, A028898(n)=T(n,3) for n>2;
A028899(n)=T(n,n) for n<=3, A028899(n)=T(n,4) for n>3;
A028900(n)=T(n,n) for n<=4, A028900(n)=T(n,5) for n>4;
A028901(n)=T(n,n) for n<=5, A028901(n)=T(n,6) for n>5;
A028902(n)=T(n,n) for n<=6, A028902(n)=T(n,7) for n>6;
A028903(n)=T(n,n) for n<=7, A028903(n)=T(n,8) for n>7;
A028904(n)=T(n,n) for n<=8, A028904(n)=T(n,9) for n>8;
T(n,n) = n for n<=9, T(n,10) = n for n>9;
A083292(n) = T(n,n).
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
EXAMPLE
From Paolo Xausa, May 22 2024: (Start)
Triangle begins:
[0] 0;
[1] 1, 1;
[2] 2, 2, 2;
[3] 3, 3, 3, 3;
[4] 4, 4, 4, 4, 4;
[5] 5, 5, 5, 5, 5, 5;
[6] 6, 6, 6, 6, 6, 6, 6;
[7] 7, 7, 7, 7, 7, 7, 7, 7;
[8] 8, 8, 8, 8, 8, 8, 8, 8, 8;
[9] 9, 9, 9, 9, 9, 9, 9, 9, 9, 9;
[10] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
... (End)
MATHEMATICA
Table[k*Floor[n/10] + Mod[n, 10], {n, 0, 10}, {k, 0, n}]//Flatten (* Paolo Xausa, May 22 2024 *)
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Apr 23 2003
EXTENSIONS
Offset changed to 0 by Paolo Xausa, May 22 2024
STATUS
approved

Search completed in 0.009 seconds