[go: up one dir, main page]

login
Search: a028574 -id:a028574
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of 1/((1-2*x)*(1-4*x)*(1-8*x)*(1-16*x)*(1-32*x)).
+10
3
1, 62, 2604, 94488, 3212592, 105911904, 3439615168, 110880192896, 3561210901248, 114167821886976, 3656718330350592, 117068577948801024, 3747052139621330944, 119919392257919049728, 3837640144621580107776, 122807998199604136476672, 3929912160285340883681280
OFFSET
0,2
COMMENTS
This is the original o.g.f. of A028574.
LINKS
FORMULA
a(n) = (32^(n+4) - 15*16^(n+4) + 70*8^(n+4) - 120*4^(n+4) + 64*2^(n+4))/322560. - Yahia Kahloune, Jul 06 2013
MAPLE
a:= n-> mul(2^(n+4)-floor(2^i), i=-1..3)/(8*8!):
seq(a(n), n=0..17); # Alois P. Heinz, May 24 2023
MATHEMATICA
CoefficientList[Series[1/((1-2x)(1-4x)(1-8x)(1-16x)(1-32x)), {x, 0, 15}]
LinearRecurrence[{62, -1240, 9920, -31744, 32768}, {1, 62, 2604, 94488, 3212592}, 40] (* Vincenzo Librandi, Jun 05 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec(1/((1-2*x)*(1-4*x)*(1-8*x)*(1-16*x)*(1-32*x))) \\ G. C. Greubel, May 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 1/((1-2*x)*(1-4*x)*(1-8*x)*(1-16*x)*(1-32*x)) )); // G. C. Greubel, May 28 2019
(Sage) (1/((1-2*x)*(1-4*x)*(1-8*x)*(1-16*x)*(1-32*x))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019
CROSSREFS
Cf. history of A028574.
KEYWORD
nonn,easy
AUTHOR
Georg Fischer, May 27 2019
STATUS
approved

Search completed in 0.007 seconds