[go: up one dir, main page]

login
Search: a020654 -id:a020654
     Sort: relevance | references | number | modified | created      Format: long | short | data
Duplicate of A020654.
+20
0
0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92
OFFSET
1,3
KEYWORD
dead
STATUS
approved
Numbers whose base-3 representation contains no 2.
(Formerly M2353)
+10
239
0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, 81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121, 243, 244, 246, 247, 252, 253, 255, 256, 270, 271, 273, 274, 279, 280, 282, 283, 324, 325, 327, 328, 333, 334, 336, 337, 351, 352
OFFSET
1,3
COMMENTS
3 does not divide binomial(2s, s) if and only if s is a member of this sequence, where binomial(2s, s) = A000984(s) are the central binomial coefficients.
This is the lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 3. - Robert Craigen (craigenr(AT)cc.umanitoba.ca), Jan 29 2001
In the notation of A185256 this is the Stanley Sequence S(0,1). - N. J. A. Sloane, Mar 19 2010
Complement of A074940. - Reinhard Zumkeller, Mar 23 2003
Sums of distinct powers of 3. - Ralf Stephan, Apr 27 2003
Numbers n such that central trinomial coefficient A002426(n) == 1 (mod 3). - Emeric Deutsch and Bruce E. Sagan, Dec 04 2003
A039966(a(n)+1) = 1; A104406(n) = number of terms <= n.
Subsequence of A125292; A125291(a(n)) = 1 for n>1. - Reinhard Zumkeller, Nov 26 2006
Also final value of n - 1 written in base 2 and then read in base 3 and with finally the result translated in base 10. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n) modulo 2 is the Thue-Morse sequence A010060. - Dennis Tseng, Jul 16 2009
Also numbers such that the balanced ternary representation is the same as the base 3 representation. - Alonso del Arte, Feb 25 2011
Fixed point of the morphism: 0 -> 01; 1 -> 34; 2 -> 67; ...; n -> (3n)(3n+1), starting from a(1) = 0. - Philippe Deléham, Oct 22 2011
It appears that this sequence lists the values of n which satisfy the condition sum(binomial(n, k)^(2*j), k = 0..n) mod 3 <> 0, for any j, with offset 0. See Maple code. - Gary Detlefs, Nov 28 2011
Also, it follows from the above comment by Philippe Lallouet that the sequence must be generated by the rules: a(1) = 0, and if m is in the sequence then so are 3*m and 3*m + 1. - L. Edson Jeffery, Nov 20 2015
Add 1 to each term and we get A003278. - N. J. A. Sloane, Dec 01 2019
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section E10, pp. 317-323.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David W. Wilson, Table of n, a(n) for n = 1..10000 (first 1024 terms from T. D. Noe)
J.-P. Allouche, G.-N. Han, and J. Shallit, On some conjectures of P. Barry, arXiv:2006.08909 [math.NT], 2020.
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
J.-P. Allouche, J. Shallit and G. Skordev, Self-generating sets, integers with missing blocks and substitutions, Discrete Math. 292 (2005) 1-15.
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
Megumi Asada, Bruce Fang, Eva Fourakis, Sarah Manski, Nathan McNew, Steven J. Miller, Gwyneth Moreland, Ajmain Yamin, and Sindy Xin Zhang, Avoiding 3-Term Geometric Progressions in Hurwitz Quaternions, Williams College (2023).
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
Noam Benson-Tilsen, Samuel Brock, Brandon Faunce, Monish Kumar, Noah Dokko Stein, and Joshua Zelinsky, Total Difference Labeling of Regular Infinite Graphs, arXiv:2107.11706 [math.CO], 2021.
Raghavendra Bhat, Cristian Cobeli, and Alexandru Zaharescu, Filtered rays over iterated absolute differences on layers of integers, arXiv:2309.03922 [math.NT], 2023. See page 16.
Matvey Borodin, Hannah Han, Kaylee Ji, Tanya Khovanova, Alexander Peng, David Sun, Isabel Tu, Jason Yang, William Yang, Kevin Zhang, and Kevin Zhao, Variants of Base 3 over 2, arXiv:1901.09818 [math.NT], 2019.
Ben Chen, Richard Chen, Joshua Guo, Tanya Khovanova, Shane Lee, Neil Malur, Nastia Polina, Poonam Sahoo, Anuj Sakarda, Nathan Sheffield, and Armaan Tipirneni, On Base 3/2 and its Sequences, arXiv:1808.04304 [math.NT], 2018.
Karl Dilcher and Larry Ericksen, Hyperbinary expansions and Stern polynomials, Elec. J. Combin, Vol. 22 (2015), Article P2.24.
P. Erdős, V. Lev, G. Rauzy, C. Sandor, and A. Sarkozy, Greedy algorithm, arithmetic progressions, subset sums and divisibility, Discrete Math., Vol. 200, No. 1-3 (1999), pp. 119-135 (see Table 1). alternate link.
Joseph L. Gerver and L. Thomas Ramsey, Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comp., Vol. 33, No. 148 (1979), pp. 1353-1359.
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 45.
Kathrin Kostorz, Robert W. Hölzel and Katharina Krischer, Distributed coupling complexity in a weakly coupled oscillatory network with associative properties, New J. Phys., Vol. 15 (2013), #083010; doi:10.1088/1367-2630/15/8/083010.
Clark Kimberling, Affinely recursive sets and orderings of languages, Discrete Math., Vol. 274, Vol. 1-3 (2004), pp. 147-160.
John W. Layman, Some Properties of a Certain Nonaveraging Sequence, J. Integer Sequences, Vol. 2 (1999), Article 99.1.3.
Manfred. Madritsch and Stephan Wagner, A central limit theorem for integer partitions, Monatsh. Math., Vol. 161, No. 1 (2010), pp. 85-114.
Richard A. Moy and David Rolnick, Novel structures in Stanley sequences, Discrete Math., Vol. 339, No. 2 (2016), pp. 689-698; arXiv preprint, arXiv:1502.06013 [math.CO], 2015.
A. M. Odlyzko and R. P. Stanley, Some curious sequences constructed with the greedy algorithm, 1978, remark 1 (PDF, PS, TeX).
Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 228. [?Broken link]
Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 228.
David Rolnick and Praveen S. Venkataramana, On the growth of Stanley sequences, Discrete Math., Vol. 338, No. 11 (2015), pp. 1928-1937, see p. 1930; arXiv preprint, arXiv:1408.4710 [math.CO], 2014.
Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
Zoran Sunic, Tree morphisms, transducers and integer sequences, arXiv:math/0612080 [math.CO], 2006.
B. Vasic, K. Pedagani and M. Ivkovic, High-rate girth-eight low-density parity-check codes on rectangular integer lattices, IEEE Transactions on Communications, Vol. 52, Issue 8 (2004), pp. 1248-1252.
Eric Weisstein's World of Mathematics, Central Binomial Coefficient.
FORMULA
a(n) = A005823(n)/2 = A003278(n)-1 = A033159(n)-2 = A033162(n)-3.
Numbers n such that the coefficient of x^n is > 0 in prod (k >= 0, 1 + x^(3^k)). - Benoit Cloitre, Jul 29 2003
a(n+1) = Sum_{k=0..m} b(k)* 3^k and n = Sum( b(k)* 2^k ).
a(2n+1) = 3a(n+1), a(2n+2) = a(2n+1) + 1, a(0) = 0.
a(n+1) = 3*a(floor(n/2)) + n - 2*floor(n/2). - Ralf Stephan, Apr 27 2003
G.f.: (x/(1-x)) * Sum_{k>=0} 3^k*x^2^k/(1+x^2^k). - Ralf Stephan, Apr 27 2003
a(n) = Sum_{k = 1..n-1} (1 + 3^A007814(k)) / 2. - Philippe Deléham, Jul 09 2005
From Reinhard Zumkeller, Mar 02 2008: (Start)
A081603(a(n)) = 0.
If the offset were changed to zero, then: a(0) = 0, a(n+1) = f(a(n) + 1, f(a(n)+1) where f(x, y) = if x < 3 and x <> 2 then y else if x mod 3 = 2 then f(y+1, y+1) else f(floor(x/3), y). (End)
With offset a(0) = 0: a(n) = Sum_{k>=0} A030308(n,k)*3^k. - Philippe Deléham, Oct 15 2011
a(2^n) = A003462(n). - Philippe Deléham, Jun 06 2015
We have liminf_{n->infinity} a(n)/n^(log(3)/log(2)) = 1/2 and limsup_{n->infinity} a(n)/n^(log(3)/log(2)) = 1. - Gheorghe Coserea, Sep 13 2015
a(2^k+m) = a(m) + 3^k with 1 <= m <= 2^k and 1 <= k, a(1)=0, a(2)=1. - Paul Weisenhorn, Mar 22 2020
Sum_{n>=2} 1/a(n) = 2.682853110966175430853916904584699374821677091415714815171756609672281184705... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022
A065361(a(n)) = n-1. - Rémy Sigrist, Feb 06 2023
a(n) ≍ n^k, where k = log 3/log 2 = 1.5849625007. (I believe the constant varies from 1/2 to 1.) - Charles R Greathouse IV, Mar 29 2024
EXAMPLE
a(6) = 12 because 6 = 0*2^0 + 1*2^1 + 1*2^2 = 2+4 and 12 = 0*3^0 + 1*3^1 + 1*3^2 = 3 + 9.
This sequence regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ...:
0
1
3, 4
9, 10, 12, 13
27, 28, 30, 31, 36, 37, 39, 40
81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121
... - Philippe Deléham, Jun 06 2015
MAPLE
t := (j, n) -> add(binomial(n, k)^j, k=0..n):
for i from 1 to 400 do
if(t(4, i) mod 3 <>0) then print(i) fi
od; # Gary Detlefs, Nov 28 2011
# alternative Maple program:
a:= proc(n) option remember: local k, m:
if n=1 then 0 elif n=2 then 1 elif n>2 then k:=floor(log[2](n-1)): m:=n-2^k: procname(m)+3^k: fi: end proc:
seq(a(n), n=1.. 20); # Paul Weisenhorn, Mar 22 2020
# third Maple program:
a:= n-> `if`(n=1, 0, irem(n-1, 2, 'q')+3*a(q+1)):
seq(a(n), n=1..100); # Alois P. Heinz, Jan 26 2022
MATHEMATICA
Table[FromDigits[IntegerDigits[k, 2], 3], {k, 60}]
Select[Range[0, 400], DigitCount[#, 3, 2] == 0 &] (* Harvey P. Dale, Jan 04 2012 *)
Join[{0}, Accumulate[Table[(3^IntegerExponent[n, 2] + 1)/2, {n, 57}]]] (* IWABUCHI Yu(u)ki, Aug 01 2012 *)
FromDigits[#, 3]&/@Tuples[{0, 1}, 7] (* Harvey P. Dale, May 10 2019 *)
PROG
(PARI) A=vector(100); for(n=2, #A, A[n]=if(n%2, 3*A[n\2+1], A[n-1]+1)); A \\ Charles R Greathouse IV, Jul 24 2012
(PARI) is(n)=while(n, if(n%3>1, return(0)); n\=3); 1 \\ Charles R Greathouse IV, Mar 07 2013
(PARI) a(n) = fromdigits(binary(n-1), 3); \\ Gheorghe Coserea, Jun 15 2018
(Haskell)
a005836 n = a005836_list !! (n-1)
a005836_list = filter ((== 1) . a039966) [0..]
-- Reinhard Zumkeller, Jun 09 2012, Sep 29 2011
(Python)
def A005836(n):
return int(format(n-1, 'b'), 3) # Chai Wah Wu, Jan 04 2015
(Julia)
function a(n)
m, r, b = n, 0, 1
while m > 0
m, q = divrem(m, 2)
r += b * q
b *= 3
end
r end; [a(n) for n in 0:57] |> println # Peter Luschny, Jan 03 2021
CROSSREFS
Cf. A039966 (characteristic function).
For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Row 3 of array A104257.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
See also A000452.
KEYWORD
nonn,nice,easy,base,tabf
EXTENSIONS
Offset corrected by N. J. A. Sloane, Mar 02 2008
Edited by the Associate Editors of the OEIS, Apr 07 2009
STATUS
approved
Szekeres's sequence: a(n)-1 in ternary = n-1 in binary; also: a(1) = 1, a(2) = 2, and thereafter a(n) is smallest number k which avoids any 3-term arithmetic progression in a(1), a(2), ..., a(n-1), k.
(Formerly M0975)
+10
73
1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41, 82, 83, 85, 86, 91, 92, 94, 95, 109, 110, 112, 113, 118, 119, 121, 122, 244, 245, 247, 248, 253, 254, 256, 257, 271, 272, 274, 275, 280, 281, 283, 284, 325, 326, 328, 329, 334, 335, 337, 338, 352, 353
OFFSET
1,2
COMMENTS
That is, there are no three elements A, B and C such that B - A = C - B.
Positions of 1's in Richard Stanley's Forest Fire sequence A309890. - N. J. A. Sloane, Dec 01 2019
Subtracting 1 from each term gives A005836 (ternary representation contains no 2's). - N. J. A. Sloane, Dec 01 2019
Difference sequence related to Gray code bit sequence (A001511). The difference patterns follows a similar repeating pattern (ABACABADABACABAE...), but each new value is the sum of the previous values, rather than simply 1 more than the maximum of the previous values. - Hal Burch (hburch(AT)cs.cmu.edu), Jan 12 2004
Sums of distinct powers of 3, translated by 1.
Positions of 0 in A189820; complement of A189822. - Clark Kimberling, May 26 2011
Also, Stanley sequence S(1): see OEIS Index under Stanley sequences (link below). - M. F. Hasler, Jan 18 2016
Named after the Hungarian-Australian mathematician George Szekeres (1911-2005). - Amiram Eldar, May 07 2021
If A_n=(a(1),a(2),...,a(2^n)), then A_(n+1)=(A_n,A_n+3^n). - Arie Bos, Jul 24 2022
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 164.
Richard K. Guy, Unsolved Problems in Number Theory, E10.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David W. Wilson, Table of n, a(n) for n = 1..10000 [a(1..1024) from T. D. Noe]
Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
Paul Erdős and Paul Turan, On some sequences of integers, J. London Math. Soc., 11 (1936), 261-264.
Joseph Gerver, James Propp and Jamie Simpson, Greedily partitioning the natural numbers into sets free of arithmetic progressions Proc. Amer. Math. Soc. 102 (1988), no. 3, 765-772.
Fanel Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sci. 16E, 237-240, 1997.
Henry Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
Leo Moser, An Introduction to the Theory of Numbers, The Trillia Group, 2011 (written in 1957). See pp. 61-62.
James Propp and N. J. A. Sloane, Email, March 1994
Eric Weisstein's World of Mathematics, Smarandache Sequences.
FORMULA
a(2*k + 2) = a(2*k + 1) + 1, a(2^k + 1) = 2*a(2^k).
a(n) = b(n+1) with b(0) = 1, b(2*n) = 3*b(n)-2, b(2*n+1) = 3*b(n)-1. - Ralf Stephan, Aug 23 2003
G.f.: x/(1-x)^2 + x * Sum_{k>=1} 3^(k-1)*x^(2^k)/((1-x^(2^k))*(1-x)). - Ralf Stephan, Sep 10 2003, corrected by Robert Israel, May 25 2011
Conjecture: a(n) = (A191107(n) + 2)/3 = (A055246(n) + 5)/6. - L. Edson Jeffery, Nov 26 2015
a(n) mod 2 = A010059(n). - Arie Bos, Aug 13 2022
EXAMPLE
G.f. = x + 2*x^2 + 4*x^3 + 5*x^4 + 10*x^5 + 11*x^6 + 13*x^7 + 14*x^8 + 28*x^9 + ...
MAPLE
a:= proc(n) local m, r, b; m, r, b:= n-1, 1, 1;
while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*3 od; r
end:
seq(a(n), n=1..100); # Alois P. Heinz, Aug 17 2013
MATHEMATICA
Take[ Sort[ Plus @@@ Subsets[ Table[3^n, {n, 0, 6}]]] + 1, 58] (* Robert G. Wilson v, Oct 23 2004 *)
a[1] = 0; h = 180;
Table[a[3 k - 2] = a[k], {k, 1, h}];
Table[a[3 k - 1] = a[k], {k, 1, h}];
Table[a[3 k] = 1, {k, 1, h}];
Table[a[n], {n, 1, h}] (* A189820 *)
Flatten[Position[%, 0]] (* A003278 *)
Flatten[Position[%%, 1]] (* A189822 *)
(* A003278 from A189820, from Clark Kimberling, May 26 2011 *)
Table[FromDigits[IntegerDigits[n, 2], 3] + 1, {n, 0, 57}] (* Amit Munje, Jun 03 2018 *)
PROG
(Perl) $nxt = 1; @list = (); for ($cnt = 0; $cnt < 1500; $cnt++) { while (exists $legal{$nxt}) { $nxt++; } print "$nxt "; last if ($nxt >= 1000000); for ($i = 0; $i <= $#list; $i++) { $t = 2*$nxt - $list[$i]; $legal{$t} = -1; } $cnt++; push @list, $nxt; $nxt++; } # Hal Burch
(PARI) a(n)=1+sum(i=1, n-1, (1+3^valuation(i, 2))/2) \\ Ralf Stephan, Jan 21 2014
(Python)
def A003278(n):
return int(format(n-1, 'b'), 3)+1 # Chai Wah Wu, Jan 04 2015
(Julia)
function a(n)
return 1 + parse(Int, bitstring(n-1), base=3)
end # Gabriel F. Lipnik, Apr 16 2021
CROSSREFS
Equals 1 + A005836. Cf. A001511, A098871.
Row 0 of array in A093682.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
Cf. A003002, A229037 (the Forest Fire sequence), A309890 (Stanley's version).
Similar formula:
If A_n=(a(1),a(2),...,a(2^n)), then A_(n+1)=(A_n,A_n+4^n) produces A098871;
If A_n=(a(1),a(2),...,a(2^n)), then A_(n+1)=(A_n,A_n+2*3^n) produces A191106.
KEYWORD
nonn,nice,easy
STATUS
approved
"9ish numbers": decimal representation contains at least one nine.
+10
56
9, 19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 209, 219, 229, 239, 249, 259, 269, 279, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298
OFFSET
1,1
COMMENTS
The 9ish numbers are closed under lunar multiplication. The lunar primes (A087097) are a subset.
Almost all numbers are 9ish, in the sense that the asymptotic density of this set is 1: Among the 9*10^(n-1) n-digit numbers, only a fraction of 0.8*0.9^(n-1) doesn't have a digit 9, and this fraction tends to zero (< 1/10^k for n > 22k-3). This explains the formula a(n) ~ n. - M. F. Hasler, Nov 19 2018
A 9ish number is a number whose largest decimal digit is 9. - Stefano Spezia, Nov 16 2023
LINKS
D. Applegate, C program for lunar arithmetic and number theory [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
D. Applegate, M. LeBrun, and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
FORMULA
Complement of A007095. A102683(a(n)) > 0 (defines this sequence). A068505(a(n)) = a(n): fixed points of A068505 are the terms of this sequence and the numbers < 9. - Reinhard Zumkeller, Dec 29 2011, edited by M. F. Hasler, Nov 16 2018
a(n) ~ n. - Charles R Greathouse IV, May 15 2013
EXAMPLE
E.g. 9, 19, 69, 90, 96, 99 and 1234567890 are all 9ish.
MAPLE
seq(`if`(numboccur(9, convert(n, base, 10))>0, n, NULL), n=0..100); # François Marques, Oct 12 2020
MATHEMATICA
Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 10 ], 9 ]>0)& ] (* François Marques, Oct 12 2020 *)
Select[Range[300], DigitCount[#, 10, 9]>0&] (* Harvey P. Dale, Mar 04 2023 *)
PROG
(Haskell)
a011539 n = a011539_list !! (n-1)
a011539_list = filter ((> 0) . a102683) [1..] -- Reinhard Zumkeller, Dec 29 2011
(PARI) is(n)=n=vecsort(digits(n)); n[#n]==9 \\ Charles R Greathouse IV, May 15 2013
(PARI) select( is_A011539(n)=vecmax(digits(n))==9, [1..300]) \\ M. F. Hasler, Nov 16 2018
(GAP) Filtered([1..300], n->9 in ListOfDigits(n)); # Muniru A Asiru, Feb 25 2019
(Python)
def ok(n): return '9' in str(n)
print(list(filter(ok, range(299)))) # Michael S. Branicky, Sep 19 2021
CROSSREFS
Cf. A088924 (number of n-digit terms).
Cf. A087062 (lunar product), A087097 (lunar primes).
A102683 (number of digits 9 in n); fixed points > 8 of A068505.
Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), this sequence (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).
Supersequence of A043525.
KEYWORD
nonn,base,easy
STATUS
approved
Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 7.
+10
43
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85
OFFSET
1,3
COMMENTS
Also the set of numbers with no "6" in their base-7 representation; see Gerver-Ramsey, also comments in A020654. - Nathaniel Johnston, Jun 27 2011
Up to the offset, identical to A037470. There are lexicographically earlier, but non-monotonic sequences which do not contain a 7-term AP, e.g., starting with 0,0,0,0,0,0,1,0,... - M. F. Hasler, Oct 05 2014
LINKS
J. L. Gerver and L. T. Ramsey, Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comp., 33 (1979), 1353-1359.
MAPLE
seq(`if`(numboccur(6, convert(n, base, 7))=0, n, NULL), n=0..85); # Nathaniel Johnston, Jun 27 2011
MATHEMATICA
Select[Range[0, 100], FreeQ[IntegerDigits[#, 7], 6]&] (* Jean-François Alcover, Jan 27 2023 *)
PROG
(PARI) a(n)=vector(#n=digits(n-1, 6), i, 7^(#n-i))*n~ \\ M. F. Hasler, Oct 05 2014
CROSSREFS
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
KEYWORD
nonn,easy
EXTENSIONS
Name edited by M. F. Hasler, Oct 10 2014. Further edited by N. J. A. Sloane, Jan 04 2016
STATUS
approved
Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 7.
+10
29
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 99
OFFSET
1,2
COMMENTS
This is different from A047304: note the gap between 41 and 50. - M. F. Hasler, Oct 07 2014
LINKS
FORMULA
a(n) = A020657(n)+1. - M. F. Hasler, Oct 07 2014
MAPLE
Noap:= proc(N, m)
# N terms of earliest increasing seq with no m-term arithmetic progression
local A, forbid, n, c, ds, j;
A:= Vector(N):
A[1..m-1]:= <($1..m-1)>:
forbid:= {m}:
for n from m to N do
c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
A[n]:= c;
ds:= convert(map(t -> c-t, A[m-2..n-1]), set);
for j from m-2 to 2 by -1 do
ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]), set);
if ds = {} then break fi;
od;
forbid:= select(`>`, forbid, c) union map(`+`, ds, c);
od:
convert(A, list)
end proc:
Noap(100, 7); # Robert Israel, Jan 04 2016
MATHEMATICA
Select[Range[0, 100], FreeQ[IntegerDigits[#, 7], 6]&] + 1 (* Jean-François Alcover, Aug 18 2023, after M. F. Hasler *)
CROSSREFS
Cf. A047304.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
KEYWORD
nonn
STATUS
approved
Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 10.
+10
29
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 81, 82, 83, 84, 85, 88, 89, 96, 97
OFFSET
1,2
LINKS
MAPLE
Noap:= proc(N, m)
# N terms of earliest increasing seq with no m-term arithmetic progression
local A, forbid, n, c, ds, j;
A:= Vector(N):
A[1..m-1]:= <($1..m-1)>:
forbid:= {m}:
for n from m to N do
c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
A[n]:= c;
ds:= convert(map(t -> c-t, A[m-2..n-1]), set);
for j from m-2 to 2 by -1 do
ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]), set);
if ds = {} then break fi;
od;
forbid:= select(`>`, forbid, c) union map(`+`, ds, c);
od:
convert(A, list)
end proc:
Noap(100, 10); # Robert Israel, Jan 04 2016
CROSSREFS
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
KEYWORD
nonn
STATUS
approved
Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 6.
(Formerly M0516)
+10
28
1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 33, 34, 35, 36, 37, 39, 43, 44, 45, 46, 47, 49, 50, 51, 52, 59, 60, 62, 63, 64, 65, 66, 68, 69, 71, 73, 77, 85, 87, 88, 89, 90, 91, 93, 96, 97, 98, 99, 100, 103, 104, 107, 111, 114, 115, 117, 118, 120
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. L. Gerver and L. T. Ramsey, Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comp. 33 (1979), 1353-1359.
FORMULA
a(n) = A020656(n) + 1.
MAPLE
N:= 100: # to get a(1)..a(N)
A:= Vector(N):
A[1..5]:= <($1..5)>:
forbid:= {6}:
for n from 6 to N do
c:= min({$A[n-1]+1::max(max(forbid)+1, A[n-1]+1)} minus forbid);
A[n]:= c;
ds:= convert(map(t -> c-t, A[4..n-1], set);
if ds = {} then next fi;
ds:= ds intersect convert(map(t -> (c-t)/4, A[1..n-4]), set);
if ds = {} then next fi;
ds:= ds intersect convert(map(t -> (c-t)/3, A[2..n-3]), set);
if ds = {} then next fi;
ds:= ds intersect convert(map(t -> (c-t)/2, A[3..n-2]), set);
forbid:= select(`>`, forbid, c) union map(`+`, ds, c);
od:
convert(A, list); # Robert Israel, Jan 04 2016
PROG
(PARI) A005838(n, show=1, i=1, o=6, u=0)={for(n=1, n, show&&print1(i, ", "); u+=1<<i; while(i++, for(s=1, (i-1)\(o-1), for(j=1, o-1, bittest(u, i-s*j)||next(2)); next(2)); next(2))); i} \\ M. F. Hasler, Jan 03 2016
CROSSREFS
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
KEYWORD
nonn
EXTENSIONS
Name and links/references edited by M. F. Hasler, Jan 03 2016
Further edited by N. J. A. Sloane, Jan 04 2016
STATUS
approved
Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 5.
+10
28
1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 126, 127, 128, 129, 131, 132, 133
OFFSET
1,2
LINKS
MAPLE
Noap:= proc(N, m)
# N terms of earliest increasing seq with no m-term arithmetic progression
local A, forbid, n, c, ds, j;
A:= Vector(N):
A[1..m-1]:= <($1..m-1)>:
forbid:= {m}:
for n from m to N do
c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
A[n]:= c;
ds:= convert(map(t -> c-t, A[m-2..n-1]), set);
for j from m-2 to 2 by -1 do
ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]), set);
if ds = {} then break fi;
od;
forbid:= select(`>`, forbid, c) union map(`+`, ds, c);
od:
convert(A, list)
end proc:
Noap(100, 5); # Robert Israel, Jan 04 2016
MATHEMATICA
t = {1, 2, 3, 4}; Do[s = Table[Append[i, n], {i, Subsets[t, {4}]}]; If[! MemberQ[Table[Differences[i, 2], {i, s}], {0, 0, 0}], AppendTo[t, n]], {n, 5, 100}]; t (* T. D. Noe, Apr 17 2014 *)
CROSSREFS
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
KEYWORD
nonn
STATUS
approved
Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 6.
+10
28
0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 32, 33, 34, 35, 36, 38, 42, 43, 44, 45, 46, 48, 49, 50, 51, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 72, 76, 84, 86, 87, 88, 89, 90, 92, 95, 96, 97, 98, 99, 102, 103, 106, 110, 113, 114, 116, 117, 119, 121
OFFSET
1,3
LINKS
FORMULA
a(n) = A005838(n) - 1.
EXAMPLE
5 is excluded since (0,1,2,3,4,5) would be a 6-term AP.
10 is excluded since (0,2,4,6,8,10) would be a 6-term AP.
Idem for 15 and 20.
25 is not excluded, but after 25 (1,6,11,16,21,26) would be a 6-AP, and similarly all of 26 through 32 are excluded.
PROG
(PARI) A020656(n, show=1, i=0, o=6, u=0)={for(n=1, n, show&&print1(i, ", "); u+=1<<i; while(i++, for(s=1, i\(o-1), for(j=1, o-1, bittest(u, i-s*j)||next(2)); next(2)); next(2))); i} \\ M. F. Hasler, Jan 03 2016
CROSSREFS
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
KEYWORD
nonn
EXTENSIONS
Edited by M. F. Hasler, Jan 03 2016
Further edited (with new offset) by N. J. A. Sloane, Jan 04 2016
STATUS
approved

Search completed in 0.026 seconds