OFFSET
0,1
COMMENTS
a(n) = smallest prime divisor of n!! for n >= 2. For biggest prime divisor of n!! see A139421. - Artur Jasinski, Apr 21 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=-charpoly(A,-2). - Milan Janjic, Jan 27 2010
Simple continued fraction of 1+sqrt(5/3) = A176020. - R. J. Mathar, Mar 08 2012
p(n) = a(n-1) is the Abelian complexity function of the Thue-Morse word A010060. - Nathan Fox, Mar 12 2013
LINKS
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 466
G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, J. London Math. Soc. 83(1) (2011) 79-95.
G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, arXiv:0911.2914 [math.CO], 2009.
Index entries for linear recurrences with constant coefficients, signature (0,1).
FORMULA
a(n) = 5/2 - ((-1)^n)/2.
From Jaume Oliver Lafont, Mar 20 2009: (Start)
G.f.:(2+3*x)/(1-x^2).
Linear recurrence: a(0)=2, a(1)=3, a(n)=a(n-2) for n>=2. (End)
a(n) = floor((n+1)*5/2) - floor((n)*5/2). - Hailey R. Olafson, Jul 23 2014
a(n) = 3 - ((n+1) mod 2). - Wesley Ivan Hurt, Jul 24 2014
MAPLE
MATHEMATICA
Table[5/2 - (-1)^n/2, {n, 0, 100}] or a = {}; Do[b = First[First[FactorInteger[n!! ]]]; AppendTo[a, b], {n, 2, 1000}]; a (* Artur Jasinski, Apr 21 2008 *)
2 + Mod[Range[0, 100], 2] (* Wesley Ivan Hurt, Jul 24 2014 *)
PadRight[{}, 120, {2, 3}] (* Harvey P. Dale, Jan 20 2023 *)
PROG
(Haskell)
a010693 = (+ 2) . (`mod` 2) -- Reinhard Zumkeller, Nov 27 2012
a010693_list = cycle [2, 3] -- Reinhard Zumkeller, Mar 29 2012
(Magma) [2 + (n mod 2) : n in [0..100]]; // Wesley Ivan Hurt, Jul 24 2014
(PARI) a(n)=3 - (n+1)%2 \\ Charles R Greathouse IV, May 09 2016
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition rewritten by Bruno Berselli, Sep 30 2011
STATUS
approved