[go: up one dir, main page]

login
Search: a016767 -id:a016767
     Sort: relevance | references | number | modified | created      Format: long | short | data
Periodic sequence: Repeat 2,3.
+10
27
2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
OFFSET
0,1
COMMENTS
a(n) = smallest prime divisor of n!! for n >= 2. For biggest prime divisor of n!! see A139421. - Artur Jasinski, Apr 21 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=-charpoly(A,-2). - Milan Janjic, Jan 27 2010
Simple continued fraction of 1+sqrt(5/3) = A176020. - R. J. Mathar, Mar 08 2012
p(n) = a(n-1) is the Abelian complexity function of the Thue-Morse word A010060. - Nathan Fox, Mar 12 2013
LINKS
G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, J. London Math. Soc. 83(1) (2011) 79-95.
G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, arXiv:0911.2914 [math.CO], 2009.
FORMULA
a(n) = 5/2 - ((-1)^n)/2.
a(n) = 2 + (n mod 2) = A007395(n) + A000035(n). - Reinhard Zumkeller, Mar 23 2005
a(n) = A020639(A016767(n)) for n>0. - Reinhard Zumkeller, Jan 29 2009
From Jaume Oliver Lafont, Mar 20 2009: (Start)
G.f.:(2+3*x)/(1-x^2).
Linear recurrence: a(0)=2, a(1)=3, a(n)=a(n-2) for n>=2. (End)
a(n) = A001615(2n)/A001615(n) for n > 0. - Enrique Pérez Herrero, Jun 06 2012
a(n) = floor((n+1)*5/2) - floor((n)*5/2). - Hailey R. Olafson, Jul 23 2014
a(n) = 3 - ((n+1) mod 2). - Wesley Ivan Hurt, Jul 24 2014
MAPLE
A010693:=n->2+(n mod 2): seq(A010693(n), n=0..100); # Wesley Ivan Hurt, Jul 24 2014
MATHEMATICA
Table[5/2 - (-1)^n/2, {n, 0, 100}] or a = {}; Do[b = First[First[FactorInteger[n!! ]]]; AppendTo[a, b], {n, 2, 1000}]; a (* Artur Jasinski, Apr 21 2008 *)
2 + Mod[Range[0, 100], 2] (* Wesley Ivan Hurt, Jul 24 2014 *)
PadRight[{}, 120, {2, 3}] (* Harvey P. Dale, Jan 20 2023 *)
PROG
(Haskell)
a010693 = (+ 2) . (`mod` 2) -- Reinhard Zumkeller, Nov 27 2012
a010693_list = cycle [2, 3] -- Reinhard Zumkeller, Mar 29 2012
(Magma) [2 + (n mod 2) : n in [0..100]]; // Wesley Ivan Hurt, Jul 24 2014
(PARI) a(n)=3 - (n+1)%2 \\ Charles R Greathouse IV, May 09 2016
CROSSREFS
Cf. A139421.
Cf. A026549 (partial products).
KEYWORD
nonn,easy
EXTENSIONS
Definition rewritten by Bruno Berselli, Sep 30 2011
STATUS
approved
Triangle read by rows: T(n,k) = (k*n)^k, 0 <= k <= n.
+10
15
1, 1, 1, 1, 2, 16, 1, 3, 36, 729, 1, 4, 64, 1728, 65536, 1, 5, 100, 3375, 160000, 9765625, 1, 6, 144, 5832, 331776, 24300000, 2176782336, 1, 7, 196, 9261, 614656, 52521875, 5489031744, 678223072849, 1, 8, 256, 13824, 1048576, 102400000, 12230590464
OFFSET
0,5
COMMENTS
T(n,0) = 1;
T(n,1) = n for n > 0;
T(n,2) = A016742(n) for n > 1;
T(n,3) = A016767(n) for n > 2;
T(n,4) = A016804(n) for n > 3;
T(n,5) = A016853(n) for n > 4;
T(n,6) = A016914(n) for n > 5;
T(n,7) = A016987(n) for n > 6;
T(n,8) = A017072(n) for n > 7;
T(n,9) = A017169(n) for n > 8;
T(n,10) = A017278(n) for n > 9;
T(n,11) = A017399(n) for n > 10;
T(n,12) = A017532(n) for n > 11;
T(n,n) = A062206(n).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 16;
1, 3, 36, 729;
1, 4, 64, 1728, 65536;
1, 5, 100, 3375, 160000, 9765625;
1, 6, 144, 5832, 331776, 24300000, 2176782336;
...
MATHEMATICA
Table[If[n == 0, 1, If[ k == 0, 1, (k*n)^k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 15 2018 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1((k*n)^k, ", "))) \\ G. C. Greubel, Sep 15 2018
(Magma) [[(n*k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Sep 15 2018
CROSSREFS
Cf. A000312.
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Jan 31 2009
STATUS
approved
a(n) = 5*n^3.
+10
11
0, 5, 40, 135, 320, 625, 1080, 1715, 2560, 3645, 5000, 6655, 8640, 10985, 13720, 16875, 20480, 24565, 29160, 34295, 40000, 46305, 53240, 60835, 69120, 78125, 87880, 98415, 109760, 121945, 135000, 148955, 163840, 179685, 196520, 214375, 233280, 253265
OFFSET
0,2
FORMULA
G.f.: 5*x*(1 + 4*x + x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
MATHEMATICA
Table[5 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[5 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x]
PROG
(Magma) [5*n^3: n in [0..40]] /* or */ I:=[0, 5, 40, 135]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
(PARI) a(n)=5*n^3 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. similar sequences of the type k*n^3: A000578 (k=1), A033431 (k=2), A117642 (k=3), A033430 (k=4), this sequence (k=5), A244726 (k=6), A244727 (k=7), A016743 (k=8), A244728 (k=9), A244729 (k=10), A016767 (k=27), A016803 (k=64), A016851 (k=125), A016911 (k=216), A016983 (k=343), A017067 (k=512), A017163 (k=729), A017271 (k=1000), A017391 (k=1331), A017523 (k=1728).
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jul 05 2014
STATUS
approved
a(n) = (3*n-1) * 3*n * (3*n+1).
+10
6
24, 210, 720, 1716, 3360, 5814, 9240, 13800, 19656, 26970, 35904, 46620, 59280, 74046, 91080, 110544, 132600, 157410, 185136, 215940, 249984, 287430, 328440, 373176, 421800, 474474, 531360, 592620, 658416, 728910, 804264, 884640, 970200, 1061106, 1157520
OFFSET
1,1
FORMULA
G.f.: 6x * (4x^2 + 19x + 4) / (1-x)^4.
Sum_{n>=1} 1/a(n) = (log(3) - 1)/2. - Amiram Eldar, Jul 04 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/2 - 2*log(2)/3. - Amiram Eldar, May 15 2022
MATHEMATICA
Table[27n^3-3n, {n, 40}] (* Harvey P. Dale, Mar 30 2011 *)
PROG
(Magma) [27*n^3-3*n: n in [1..40]]; // Vincenzo Librandi, Sep 07 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Aug 07 2004
STATUS
approved
Least number k such that n^k + k^n is prime or 0 if no such k exists.
+10
2
1, 1, 2, 1, 24, 1, 54, 69, 2, 1, 3100, 1
OFFSET
1,3
COMMENTS
More terms given in links.
a(n) = 1 if and only if n + 1 is prime. Thus there are infinitely many nonzero entries.
For n in A016767, a(n) = 0 since n^k + k^n is factorable and will never be prime. Thus there are infinitely many zero entries.
If a(i) = j then a(j) <= i for all i and j not equal to 0.
a(n) and n must have opposite parity. If n is odd/even, a(n) must be even/odd, respectively.
Further, gcd(n, a(n)) = 1 for all n.
EXAMPLE
3^1 + 1^3 = 4 is not prime. 3^2 + 2^3 = 17 is prime. So a(3) = 2.
PROG
(PARI) a(n)=if(ispower(n)&&ispower(n)%3==0&&n%3==0, return(0)); k=1; while(!ispseudoprime(n^k+k^n), k++); return(k)
vector(12, n, a(n))
CROSSREFS
Cf. A016767.
KEYWORD
nonn,hard,more
AUTHOR
Derek Orr, May 30 2014
STATUS
approved
54n^3 - 1.
+10
1
53, 431, 1457, 3455, 6749, 11663, 18521, 27647, 39365, 53999, 71873, 93311, 118637, 148175, 182249, 221183, 265301, 314927, 370385, 431999, 500093, 574991, 657017, 746495, 843749, 949103, 1062881, 1185407, 1317005, 1457999, 1608713, 1769471, 1940597, 2122415
OFFSET
1,1
COMMENTS
a(n) is coprime to 27*n^3*(27*n^3 - 1) - 2 = A016767(n)*(A016767(n)-1) - 2.
x^3 + y^3 + z^3 = w^3 has infinitely many solutions, where every pair of elements x, y and z are coprime.
This follows from the identity a(n)^3 + (A016767(n)+1)^3 + (A016768(n)-A008588(n))^3 = (A016768(n)+A008585(n))^3 for n >= 1.
REFERENCES
Wacław Sierpiński, Czym sie zajmuje teoria liczb. Warsaw: PW "Wiedza Powszechna", 1957, pp. 59-60.
FORMULA
For n >= 1, a(n) = 54*A000578(n) - 1 = 2*A016767(n) - 1.
G.f.: (-1 + 57*x + 213*x^2 + 55*x^3)/(1 - x)^4.
MAPLE
seq(54*n^3-1, n=1..34);
MATHEMATICA
Table[54*n^3 - 1, {n, 34}]
PROG
(Magma) [ 54*n^3-1 : n in [1..34]]
(PARI) vector(34, n, 54*n^3-1)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved
Square array of denominators of t(n,k) = (1+1/(k*n))^n, read by descending antidiagonals.
+10
1
1, 2, 4, 3, 16, 27, 4, 36, 216, 256, 5, 64, 729, 4096, 3125, 6, 100, 1728, 20736, 100000, 46656, 7, 144, 3375, 65536, 759375, 2985984, 823543, 8, 196, 5832, 160000, 3200000, 34012224, 105413504, 16777216, 9, 256
OFFSET
1,2
COMMENTS
Limit(t(n,k), n -> infinity) = exp(1/k).
1st row = A000027
2nd row = A016742
3rd row = A016767
4th row = A016804
5th row = A016853
1st column = A000312
2nd column = A062971
3rd column = A091482
4th column = A091483
EXAMPLE
Table of fractions begins:
2, 3/2, 4/3, 5/4, ...
9/4, 25/16, 49/36, 81/64, ...
64/27, 343/216, 1000/729, 2197/1728, ...
625/256, 6561/4096, 28561/20736, 83521/65536, ...
...
Table of denominators begins:
1, 2, 3, 4, ...
4, 16, 36, 64, ...
27, 216, 729, 1728, ...
256, 4096, 20736, 65536, ...
...
Triangle of antidiagonals begins:
1;
2, 4;
3, 16, 27;
4, 36, 216, 256;
...
MATHEMATICA
t[n_, k_] := (1+1/(k*n))^n; Table[t[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten // Denominator
CROSSREFS
KEYWORD
frac,tabl,nonn
AUTHOR
STATUS
approved

Search completed in 0.013 seconds