[go: up one dir, main page]

login
Search: a011272 -id:a011272
     Sort: relevance | references | number | modified | created      Format: long | short | data
Hybrid binary rooted trees with n nodes whose root is labeled by "n".
+10
8
1, 1, 4, 18, 90, 481, 2690, 15547, 92124, 556664, 3417062, 21248966, 133576724, 847465593, 5419399722, 34895368578, 226050057378, 1472170887755, 9633297762870, 63305402213336, 417612181048826, 2764492667188504, 18358282050480384, 122265756020847943
OFFSET
0,3
LINKS
Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
J. M. Pallo, On the listing and random generation of hybrid binary trees, International Journal of Computer Mathematics, 50, 1994, 135-145.
FORMULA
G.f.: = 1+x*G(x)^2, where G(x) is g.f. for A007863.
Reversion of x - (x/(1 - x))^2 = 0, 1, -1, -2, -3, -4, -5, ... - Olivier Gérard, Jul 05 2001
a(n) = (2/(n+2))*Sum_{j=0...n} binomial(n+j+1, n+1)*binomial(n+j+2, n-j). - Vladimir Kruchinin, Dec 24 2010
G.f. A(x) satisfies: A(x) = 1/(1 - Sum_{k>=1} k*x^k*A(x)^k). - Ilya Gutkovskiy, Apr 10 2018
G.f. A(x) satisfies: A(x) = 1 + Sum_{n>=1} n^(n-1) * x^n*A(x)^(n+1) / (1 + (n-1)*x*A(x))^(n+1). - Paul D. Hanna, Oct 08 2023
a(n) ~ sqrt((35 + (869750 - 5250*sqrt(105))^(1/3) + 5*(14*(497 + 3*sqrt(105)))^(1/3))/525) / (sqrt(Pi) * n^(3/2) * ((2 - 104/(-181 + 105*sqrt(105))^(1/3) + (-181 + 105*sqrt(105))^(1/3))/6)^n). - Vaclav Kotesovec, Oct 08 2023
EXAMPLE
G.f. A(x) = 1 + x + 4*x^2 + 18*x^3 + 90*x^4 + 481*x^5 + 2690*x^6 + 15547*x^7 + 92124*x^8 + 556664*x^9 + 3417062*x^10 + ...
where x = x*A(x) - x^2*A(x)^2/(1 - x*A(x))^2.
MAPLE
G:= proc(n) option remember; if n<=0 then 1 else convert(series(
(x^2*G(n-1)^3 +x*G(n-1)^2 +1)/ (1-x), x=0, n+1), polynom) fi
end:
a:= n-> coeff(1+x*G(n-1)^2, x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 22 2008
# second Maple program:
a:= proc(n) option remember; `if`(n<3, [1, 1, 4][n+1], (
6*n*(210*n^2-411*n+163)*a(n-1)-4*(n-2)*(7*n-6)*(5*n-3)*a(n-2)
+2*(n-3)*(2*n-3)*(35*n-16)*a(n-3))/(5*n*(n+1)*(35*n-51)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 18 2013
MATHEMATICA
a[0] = 1; a[n_] := n*HypergeometricPFQ[{1-n, n+1, n+2}, {3/2, 2}, -1/4]; Table[ a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 02 2015, after Vladimir Kruchinin *)
CROSSREFS
Cf. A011272.
KEYWORD
nonn
AUTHOR
pallo(AT)u-bourgogne.fr (Jean Pallo)
STATUS
approved
Triangle of numbers of hybrid rooted trees (divided by Fibonacci numbers).
+10
1
1, 2, 1, 7, 4, 1, 31, 18, 6, 1, 154, 90, 33, 8, 1, 820, 481, 185, 52, 10, 1, 4575, 2690, 1065, 324, 75, 12, 1, 26398, 15547, 6276, 2006, 515, 102, 14, 1, 156233, 92124, 37711, 12468, 3420, 766, 133, 16, 1, 943174, 556664, 230277, 78030, 22412, 5439, 1085, 168, 18, 1
OFFSET
1,2
COMMENTS
Triangle T(n,k) = [x^(n-k)] A(x)^k where A(x) is the o.g.f. of A007863. - Vladimir Kruchinin, Mar 17 2011
Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A007863. - Philippe Deléham, Feb 03 2014
LINKS
Vincenzo Librandi, Rows n = 1..100, flattened
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
J. M. Pallo, On the listing and random generation of hybrid binary trees, International Journal of Computer Mathematics, 50 (1994) 135-145.
FORMULA
T(n,k) = (k/n) *Sum_{i=0..n-k} binomial(i+n-1,n-1)*binomial(i+n,n-k-i). - Vladimir Kruchinin, Mar 17 2011
(r/(m*n+r))*T((m+1)*n+r,m*n+r) = Sum_{k=1..n} k*T((m+1)*n-k,m*n)*T(r+k,r)/n. - Vladimir Kruchinin, Mar 17 2011
T(n,m) = (m/n)*Sum_{k=1..n-m+1} k*A007863(k-1)*T(n-k,m-1), 1 < m <= n. - Vladimir Kruchinin, Mar 17 2011
EXAMPLE
1
2 1
7 4 1
31 18 6 1
154 90 33 8 1
820 481 185 52 10 1
4575 2690 1065 324 75 12 1
Production matrix is:
2 1
3 2 1
5 3 2 1
8 5 3 2 1
13 8 5 3 2 1
21 13 8 5 3 2 1
34 21 13 8 5 3 2 1
55 34 21 13 8 5 3 2 1
89 55 34 21 13 8 5 3 2 1
... - Philippe Deléham, Feb 03 2014
MAPLE
A011274 := proc(n, k) k/n*add( binomial(i+n-1, n-1)*binomial(i+n, n-k-i), i=0..n-k) ; end proc: # R. J. Mathar, Mar 21 2011
MATHEMATICA
t[n_, k_] := k/n*Binomial[n, k]*HypergeometricPFQ[ {k-n, n, n+1}, {1/2 + k/2, 1+k/2}, -1/4]; Flatten[ Table[ t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Dec 02 2011, after Vladimir Kruchinin *)
PROG
(Maxima) A011274(n, k):= k/n*sum(binomial(i+n-1, n-1)*binomial(i+n, n-k-i), i, 0, n-k); /* Vladimir Kruchinin, Mar 17 2011 */
CROSSREFS
KEYWORD
nonn,easy,tabl,nice
AUTHOR
Jean Pallo (pallo(AT)u-bourgogne.fr)
STATUS
approved

Search completed in 0.009 seconds