Displaying 1-4 of 4 results found.
page
1
1, 1, 1, 2, 3, 5, 9, 16, 28, 51, 93, 170, 315, 585, 1092, 2048, 3855, 7281, 13797, 26214, 49932
Number of n-bead necklaces with beads of 2 colors and primitive period n, when turning over is not allowed but the two colors can be interchanged.
(Formerly M0711 N0262)
+10
69
1, 1, 1, 1, 2, 3, 5, 9, 16, 28, 51, 93, 170, 315, 585, 1091, 2048, 3855, 7280, 13797, 26214, 49929, 95325, 182361, 349520, 671088, 1290555, 2485504, 4793490, 9256395, 17895679, 34636833, 67108864, 130150493, 252645135, 490853403, 954437120, 1857283155
COMMENTS
Also, for any m which is a multiple of n, the number of 2m-bead balanced binary necklaces of fundamental period 2n that are equivalent to their complements. [Clarified by Aaron Meyerowitz, Jun 01 2024]
Also binary Lyndon words of length n with an odd number of 1's (for n>=1).
Also number of binary irreducible polynomials of degree n having trace 1.
Also number of binary irreducible polynomials of degree n having linear coefficient 1 (this is the same as the trace-1 condition, as the reciprocal of an irreducible polynomial is again irreducible).
Also number of binary irreducible self-reciprocal polynomials of degree 2*n; there is no such polynomial for odd degree except for x+1.
Also number of binary vectors (x_1,...x_n) satisfying Sum_{i=1..n} i*x_i = 1 (mod n+1) = size of Varshamov-Tenengolts code VT_1(n).
Also the number of dynamical cycles of period 2n of a threshold Boolean automata network which is a quasi-minimal negative circuit of size nq where q is odd and which is updated in parallel. - Mathilde Noual (mathilde.noual(AT)ens-lyon.fr), Mar 03 2009
Also the number of 3-elements orbits of the symmetric group S3 action on irreducible polynomials of degree 2n, n>1, over GF(2). - Jean Francis Michon, Philippe Ravache (philippe.ravache(AT)univ-rouen.fr), Oct 04 2009
Conjecture: Also the number of caliber-n cycles of Zagier-reduced indefinite binary quadratic forms with sum invariant equal to s, where (s-1)/n is an odd integer. - Barry R. Smith, Dec 14 2014
The Metropolis, Stein, Stein (1973) reference on page 31 Table II lists a(k) for k = 2 to 15 and is actually for sequence A056303 since there a(k) = 0 for k<2. - Michael Somos, Dec 20 2014
REFERENCES
B. D. Ginsburg, On a number theory function applicable in coding theory, Problemy Kibernetiki, No. 19 (1967), pp. 249-252.
H. Kawakami, Table of rotation sequences of x_{n+1} = x_n^2 - lambda, pp. 73-92 of G. Ikegami, Editor, Dynamical Systems and Nonlinear Oscillations, Vol. 1, World Scientific, 1986.
May, Robert M. "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. Metropolis, M. L. Stein and P. R. Stein, On finite limit sets for transformations on the unit interval, J. Combin. Theory, A 15 (1973), 25-44; reprinted in P. Cvitanovic, ed., Universality in Chaos, Hilger, Bristol, 1986, pp. 187-206.
N. J. A. Sloane, On single-deletion-correcting codes, arXiv:math/0207197 [math.CO], 2002; in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
FORMULA
a(n) = (1/(2*n)) * Sum_{odd d divides n} mu(d)*2^(n/d), where mu is the Mobius function A008683.
Sum_{k dividing m for which m/k is odd} k*a(k) = 2^(m-1). (This explains the observation that the sequence is very close to A006788. Unless m has some nontrivial odd divisors that are small relative to m, the term m*a(m) will dominate the sum. Thus, we see for instance that a(n) = A006788(n) when n has one of the forms 2^m or 2^m*p where p is an odd prime with a(2^m) < p.) - Barry R. Smith, Oct 24 2015
G.f.: 1 + Sum_{k>=1} mu(2*k)*log(1 - 2*x^k)/(2*k). - Ilya Gutkovskiy, Nov 11 2019
EXAMPLE
a(5) = 3 corresponding to the necklaces 00001, 00111, 01011.
a(6) = 5 from 000001, 000011, 000101, 000111, 001011.
MAPLE
with(numtheory); A000048 := proc(n) local d, t1; if n = 0 then RETURN(1) else t1 := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t1 := t1+mobius(d)*2^(n/d)/(2*n); fi; od; RETURN(t1); fi; end;
MATHEMATICA
a[n_] := Total[ MoebiusMu[#]*2^(n/#)& /@ Select[ Divisors[n], OddQ]]/(2n); a[0] = 1; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 21 2011 *)
a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, MoebiusMu[#] 2^(n/#) &, OddQ] / (2 n)]; (* Michael Somos, Dec 20 2014 *)
PROG
(PARI) L(n, k) = sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d) );
a(n) = sum(k=0, n, if( (n+k)%2==1, L(n, k), 0 ) ) / n;
(Python)
from sympy import divisors, mobius
def a(n): return 1 if n<1 else sum(mobius(d)*2**(n//d) for d in divisors(n) if d%2)//(2*n) # Indranil Ghosh, Apr 28 2017
CROSSREFS
Very close to A006788 [Fisher, 1989].
Nearest integer to 2^(n-1)/n.
+10
6
1, 1, 1, 2, 3, 5, 9, 16, 28, 51, 93, 171, 315, 585, 1092, 2048, 3855, 7282, 13797, 26214, 49932, 95325, 182361, 349525, 671089, 1290555, 2485513, 4793490, 9256395, 17895697, 34636833, 67108864, 130150524, 252645135, 490853405, 954437177, 1857283155, 3616814565
FORMULA
a(n) = round(hypergeometric([-n/2+1/2, -n/2+1], [3/2], 1)). - Peter Luschny, Sep 18 2014
MATHEMATICA
Table[Floor[2^(n-1)/n + 1/2], {n, 40}] (* Harvey P. Dale, Jul 20 2011 *)
(n!)^2 mod Pt(n), where Pt(n) is product of first n positive triangular numbers ( A000217).
+10
0
0, 1, 0, 36, 900, 8100, 0, 25401600, 514382400, 12859560000, 6224027040000, 56016243360000, 9466745127840000, 1855482045056640000, 0, 6679735362203904000000, 13513104637738497792000000, 156365925093831188736000000, 225792395835492236534784000000, 22579239583549223653478400000000
COMMENTS
Indices of zeros appear to be 2^k-1.
EXAMPLE
a(4) = 1*4*9*16 mod 1*3*6*10 = 576 mod 90 = 36.
PROG
(Python)
s=t=1
for n in range(1, 33):
s*=n*n
t*=n*(n+1)/2
print str(s%t)+', ',
CROSSREFS
Cf. A006472 (triangular factorial, essentially equal to Pt(n)).
Search completed in 0.017 seconds
|