[go: up one dir, main page]

login
Search: a004981 -id:a004981
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A000984(n)*A004981(n), the term-wise product of the coefficients in (1-4*x)^(-1/2) and (1-8*x)^(-1/4).
+20
0
1, 4, 60, 1200, 27300, 668304, 17153136, 455083200, 12372574500, 342766138000, 9638583800560, 274341178587840, 7887308884400400, 228685287180840000, 6678543795015960000, 196260140322869011200, 5798873833602270315300, 172160337343624495866000
OFFSET
0,2
COMMENTS
The sequences A000984 and A004981 are related by the aesthetic identity:
Sum_{n>=0} A000984(n)^3 *x^n = ( Sum_{n>=0} A004981(n)^2 *x^n )^2.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 60*x^2 + 1200*x^3 + 27300*x^4 + 668304*x^5 +...
The terms are the term-wise products of the sequences:
A000984 = [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...],
A004981 = [1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, ...].
Related sequences:
A^2: [1, 8, 136, 2880, 67800, 1699008, 44368704, 1193107968, ...],
A^4: [1, 16, 336, 7936, 200176, 5266176, 142657536, 3948773376, ...],
A^8: [1, 32, 928, 26624, 767200, 22270976, 651331072, 19178651648, ...].
PROG
(PARI) {A000984(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2), n)}
{A004981(n)=polcoeff((1-8*x +x*O(x^n))^(-1/4), n)}
{a(n)=A000984(n)*A004981(n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 04 2012
STATUS
approved
Quartic (or 4-fold) factorial numbers: a(n) = Product_{k = 0..n-1} (4*k + 1).
(Formerly M4001)
+10
81
1, 1, 5, 45, 585, 9945, 208845, 5221125, 151412625, 4996616625, 184874815125, 7579867420125, 341094033905625, 16713607661375625, 885821206052908125, 50491808745015763125, 3080000333445961550625, 200200021673987500790625, 13813801495505137554553125
OFFSET
0,3
COMMENTS
a(n), n >= 1, enumerates increasing quintic (5-ary) trees. See David Callan's comment on A007559 (number of increasing quarterny trees).
Hankel transform is A169619. - Paul Barry, Dec 03 2009
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq. 3 (2000), Article 00.2.4.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
Maxie D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Integer Seq. 13 (2010), Article 10.6.7; see page 39.
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integer Seq. 9 (2006), Article 06.1.1.
FORMULA
E.g.f.: (1 - 4*x)^(-1/4).
a(n) ~ 2^(5/2) * Pi^(1/2) * Gamma(1/4)^(-1) * n^(3/4) * 2^(2*n) * e^(-n) * n^n * (1 + 23/96 * n^(-1) - ...). - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
a(n) = Sum_{k = 0..n} (-4)^(n-k) * A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1/(1 - x/(1 - 4*x/(1 - 5*x/(1 - 8*x/(1 - 9*x/(1 - 12*x/(1 - 13*x/(1 - .../(1 - A042948(n+1)*x/(1 -... (continued fraction). - Paul Barry, Dec 03 2009
a(n) = (-3)^n * Sum_{k = 0..n} (4/3)^k * s(n+1, n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/T(0), where T(k) = 1 - x * (4*k + 1)/(1 - x * (4*k + 4)/T(k+1)) (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: 1 + x/Q(0), where Q(k) = 1 + x + 2*(2*k - 1)*x - 4*x*(k+1)/Q(k+1) (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x * (4*k + 1)/(x * (4*k + 1) + 1/G(k+1))) (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
0 = a(n) * (4*a(n+1) - a(n+2)) + a(n+1) * a(n+1) for all n in Z. - Michael Somos, Jan 17 2014
a(-n) = (-1)^n / A008545(n). - Michael Somos, Jan 17 2014
Let T(x) = 1/(1 - 3*x)^(1/3) be the e.g.f. for the sequence of triple factorial numbers A007559. Then the e.g.f. A(x) for the quartic factorial numbers satisfies T(int_{0..x} A(t) dt) = A(x). (Cf. A007559 and A008548.) - Peter Bala, Jan 02 2015
O.g.f.: hypergeom([1, 1/4], [], 4*x). - Peter Luschny, Oct 08 2015
a(n) = A264781(4*n+1, n). - Alois P. Heinz, Nov 24 2015
a(n) = 4^n * Gamma(n + 1/4)/Gamma(1/4). - Artur Jasinski, Aug 23 2016
D-finite with recurrence: a(n) +(-4*n+3)*a(n-1)=0, n>=1. - R. J. Mathar, Feb 14 2020
Sum_{n>=0} 1/a(n) = 1 + exp(1/4)*(Gamma(1/4) - Gamma(1/4, 1/4))/(2*sqrt(2)). - Amiram Eldar, Dec 18 2022
EXAMPLE
G.f. = 1 + x + 5*x^2 + 45*x^3 + 585*x^4 + 9945*x^5 + 208845*x^6 + ...
MAPLE
x:='x'; G(x):=(1-4*x)^(-1/4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1], x) od: seq(eval(f[n], x=0), n=0..17); # Zerinvary Lajos, Apr 03 2009
A007696 := n -> mul(k, k = select(k-> k mod 4 = 1, [$ 1 .. 4*n])): seq(A007696(n), n=0..17); # Peter Luschny, Jun 23 2011
MATHEMATICA
a[ n_]:= Pochhammer[ 1/4, n] 4^n; (* Michael Somos, Jan 17 2014 *)
a[ n_]:= If[n < 0, 1 / Product[ -k, {k, 3, -4n-1, 4}], Product[ k, {k, 1, 4n-3, 4}]]; (* Michael Somos, Jan 17 2014 *)
Range[0, 19]! CoefficientList[Series[((1-4x)^(-1/4)), {x, 0, 19}], x] (* Vincenzo Librandi, Oct 08 2015 *)
PROG
(PARI) {a(n) = if( n<0, 1 / prod(k=1, -n, 1 - 4*k), prod(k=1, n, 4*k - 3))}; /* Michael Somos, Jan 17 2014 */
(Maxima) A007696(n):=prod(4*k+1, k, 0, n-1)$
makelist(A007696(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Magma) [n le 2 select 1 else (4*(n-1)-7)*(Self(n-1) + 4*Self(n-2)): n in [1..20]]; // G. C. Greubel, Aug 15 2019
(Sage) [4^n*rising_factorial(1/4, n) for n in (0..20)] # G. C. Greubel, Aug 15 2019
(GAP) a:=[1, 1];; for n in [3..20] do a[n]:=(4*(n-1)-7)*(a[n-1]+4*a[n-2]); od; a; # G. C. Greubel, Aug 15 2019
CROSSREFS
a(n) = A049029(n, 1) for n >= 1 (first column of triangle).
KEYWORD
nonn
EXTENSIONS
Better description from Wolfdieter Lang, Dec 11 1999
STATUS
approved
a(n) = 2^n * (2*n)! / (n!)^2.
+10
29
1, 4, 24, 160, 1120, 8064, 59136, 439296, 3294720, 24893440, 189190144, 1444724736, 11076222976, 85201715200, 657270374400, 5082890895360, 39392404439040, 305870434467840, 2378992268083200, 18531097667174400
OFFSET
0,2
COMMENTS
Number of lattice paths from (0,0) to (n,n) using steps (0,1), and two kinds of steps (1,0). - Joerg Arndt, Jul 01 2011
The convolution square root of this sequence is A004981. - T. D. Noe, Jun 11 2002
Also main diagonal of array: T(i,1)=2^(i-1), T(1,j)=1, T(i,j) = T(i,j-1) + 2*T(i-1,j). - Benoit Cloitre, Feb 26 2003
The Hankel transform (see A001906 for definition) of this sequence with interpolated zeros(1, 0, 4, 0, 24, 0, 160, 0, 1120, ...) = is A036442: 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
The Hankel transform of this sequence gives A103488. - Philippe Deléham, Dec 02 2007
Equals the central column of the triangle A038207. - Zerinvary Lajos, Dec 08 2007
Equals number of permutations whose reverse shares the same recording tableau in the Robinson-Schensted correspondence with n=(k-1)/2 for k odd. - Dang-Son Nguyen, Jul 02 2024
LINKS
Paul Barry and Arnauld Mesinga Mwafise, Classical and Semi-Classical Orthogonal Polynomials Defined by Riordan Arrays, and Their Moment Sequences, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.5.
Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
Tucker J. Ervin, Blake Jackson, Jay Lane, Kyungyong Lee, Son Dang Nguyen, Jack O'Donohue and Michael Vaughan, Permutations whose Reverse Shares the Same Recording Tableau in the Robinson-Schensted Correspondence, Séminaire Lotharingien de Combinatoire 86 (2022), Article B86a.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
FORMULA
a(n) = C(2*n,n) * 2^n.
D-finite with recurrence a(n) = a(n-1)*(8-4/n).
a(n) = A000079(n)*A000984(n)
G.f.: 1/sqrt(1-8*x) - T. D. Noe, Jun 11 2002
E.g.f.: exp(4*x)*BesselI(0, 4*x). - Vladeta Jovovic, Aug 20 2003
a(n) = A038207(n,n). - Joerg Arndt, Jul 01 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 4*x*(2*k+1)/(4*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - 4*x/(4*x + (k+1)^2/(2*k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: Q(0)/(1+2*sqrt(x)), where Q(k) = 1 + 2*sqrt(x)/(1 - 2*sqrt(x)*(2*k+1)/(2*sqrt(x)*(2*k+1) + (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 09 2013
O.g.f.: hypergeom([1/2], [], 8*x). - Peter Luschny, Oct 08 2015
a(n) = Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n,k)*binomial(3*n-2*k,n)* binomial(n+k,n). - Peter Bala, Aug 04 2016
a(n) ~ 8^n/sqrt(Pi*n). - Ilya Gutkovskiy, Aug 04 2016
From Amiram Eldar, Jul 21 2020: (Start)
Sum_{n>=0} 1/a(n) = 8/7 + 8*sqrt(7)*arcsin(1/sqrt(8))/49.
Sum_{n>=0} (-1)^n/a(n) = (8/27)*(3 - arcsinh(1/sqrt(8))). (End)
a(n) = Sum_{k = n..2*n} binomial(2*n,k)*binomial(k,n). In general, for m >= 1, Sum_{k = n..m*n} binomial(m*n,k)*binomial(k,n) = 2^((m-1)*n)*binomial(m*n,n). - Peter Bala, Mar 25 2023
Conjecture: a(n) = Sum_{0 <= j, k <= n} binomial(n, j)*binomial(n, k)* binomial(k+j, n). - Peter Bala, Jul 16 2024
MAPLE
seq(binomial(2*n, n)*2^n, n=0..19); # Zerinvary Lajos, Dec 08 2007
MATHEMATICA
Table[2^n Binomial[2n, n], {n, 0, 30}] (* Harvey P. Dale, Dec 16 2014 *)
PROG
(PARI) {a(n)=if(n<0, 0, 2^n*(2*n)!/n!^2)} /* Michael Somos, Jan 31 2007 */
(PARI) { for (n = 0, 200, write("b059304.txt", n, " ", 2^n * (2*n)! / n!^2); ) } \\ Harry J. Smith, Jun 25 2009
(PARI) /* as lattice paths: same as in A092566 but use */
steps=[[1, 0], [1, 0], [0, 1]]; /* note the double [1, 0] */
/* Joerg Arndt, Jul 01 2011 */
(Magma) [2^n*Factorial(2*n)/Factorial(n)^2: n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
CROSSREFS
Diagonal of A013609.
Cf. A038207.
Column k=0 of A067001.
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jan 25 2001
STATUS
approved
Related to triple factorial numbers A007559(n+1).
+10
12
1, 6, 42, 315, 2457, 19656, 160056, 1320462, 11003850, 92432340, 781473420, 6642524070, 56716936290, 486145168200, 4180848446520, 36059817851235, 311811366125385, 2702365173086670, 23467908082068450, 204170800313995515, 1779202688450532345, 15527587099204645920
OFFSET
0,2
COMMENTS
Working with an offset of 1, we conjecture a(p*n) = a(n) (mod p^2) for prime p = 1 (mod 3) and all positive integers n except those n of the form n = m*p + k for 0 <= m <= (p-1)/3 and 1 <= k <= (p-1)/3. Cf. A298799, A004981 and A004982. - Peter Bala, Dec 23 2019
LINKS
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
a(n) = 3^n*A007559(n+1)/(n+1)! where A007559(n+1)=(3*n+1)!!!.
G.f.: (-1+(1-9*x)^(-1/3))/(3*x).
a(n)= A035529(n+1, 1) (first column of triangle).
Convolution of A004987(n) with A025748(n+1), n >= 0.
D-finite with recurrence: (n+1)*a(n) +3*(-3*n-1)*a(n-1)=0. - R. J. Mathar, Jan 28 2020
G.f.: (1F0(1/3;;9*x)-1)/(3*x). - R. J. Mathar, Jan 28 2020
Sum_{n>=0} 1/a(n) = 3/8 + 3*sqrt(3)*Pi/32 + 9*log(3)/32. - Amiram Eldar, Dec 22 2022
MATHEMATICA
CoefficientList[Series[(-1 + (1 - 9 x)^(-1/3))/(3 x), {x, 0, 19}], x] (* Michael De Vlieger, Oct 13 2019 *)
CROSSREFS
KEYWORD
easy,nonn
STATUS
approved
a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k + 3).
+10
9
1, 6, 42, 308, 2310, 17556, 134596, 1038312, 8046918, 62587140, 488179692, 3816677592, 29897307804, 234578876616, 1843119744840, 14499208659408, 114181268192838, 900017055167076, 7100134546318044, 56053693786721400, 442824180915099060, 3500419715805068760, 27685137752276452920
OFFSET
0,2
COMMENTS
Conjecture: a(p*n) = a(n) (mod p^2) for prime p == 1 (mod 4) and all positive integers n. Cf. A004981. - Peter Bala, Dec 22 2019
LINKS
FORMULA
G.f.: (1 - 8*x)^(-3/4).
a(n) ~ Gamma(3/4)^-1*n^(-1/4)*2^(3*n)*{1 - 3/32*n^-1 + ...}
a(n) = 8^n*Gamma(n+3/4)/(n!*Gamma(3/4)). - Vaclav Kotesovec, Sep 15 2013
From Karol A. Penson, Dec 19 2015: (Start)
a(n) = (-8)^n*binomial(-3/4,n).
E.g.f.: is the hypergeometric function of type 1F1, in Maple notation hypergeom([3/4], [1], 8*x).
Representation as n-th moment of a positive function on (0, 8): a(n) = Integral_{x=0..8} ( x^n*(2^(1/4)/(8*Pi*x^(1/4)*(1-x/8)^(3/4)) ) dx, n >= 0. This function is the solution of the Hausdorff moment problem on (0, 8) with moments equal to a(n). As a consequence this representation is unique. (End)
D-finite with recurrence: n*a(n) +2*(-4*n+1)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
MAPLE
A004982 := n -> (-8)^n*binomial(-3/4, n):
seq(A004982(n), n=0..25); # Peter Luschny, Oct 23 2018
MATHEMATICA
Table[2^n/n! Product[4k+3, {k, 0, n-1}], {n, 0, 30}] (* Harvey P. Dale, Oct 03 2011 *)
Table[Sum[2^k*Binomial[2*n-2*k, n-k]*Binomial[n+k, n], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Sep 15 2013 *)
FullSimplify[Table[8^n*Gamma[n+3/4]/(n!*Gamma[3/4]), {n, 0, 25}]] (* Vaclav Kotesovec, Sep 15 2013 *)
max = 30; s = Hypergeometric1F1[3/4, 1, 8x] + O[x]^(max+1);
CoefficientList[s, x]*(Range[0, max]!) (* Jean-François Alcover, Dec 19 2015, after Karol A. Penson *)
PROG
(PARI) a(n)=2^n/n!*prod(k=0, n-1, 4*k+3)
for(n=0, 25, print(a(n)))
(PARI) x='x+O('x^66); Vec((1-8*x)^(-3/4)) \\ Joerg Arndt, Apr 20 2013
(Magma) [1] cat [2^n*&*[4*k+3: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
(Sage) [8^n*rising_factorial(3/4, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
(GAP) List([0..25], n-> 2^n*Product([0..n-1], k-> 4*k+3)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
CROSSREFS
Main diagonal of A067001. Cf. A004981.
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
EXTENSIONS
More terms from Rick L. Shepherd, Mar 03 2002
STATUS
approved
a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k - 1).
+10
8
1, -2, -6, -28, -154, -924, -5852, -38456, -259578, -1788204, -12517428, -88759944, -636112932, -4599585816, -33511268088, -245749299312, -1812401082426, -13433090375628, -100001895018564, -747382583822952, -5605369378672140, -42173731515723720
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 - 8*x)^(1/4).
a(n) ~ -1/4*Gamma(3/4)^-1*n^(-5/4)*2^(3*n)*{1 + 5/32*n^-1 + ...}
a(n) = -1/n*(if n=1 then (2)^n else Sum_{k=1..n-1} 2^n*binomial(k+n-1, n-1) * (Sum_{j=0..k} (binomial(k,j)*binomial(j,n-1-3*k+2*j)*(3/2)^(3*k-n+1-j)*(-1)^(n-1-3*k)*(1/4)^(k-j) ) ), n>0. - Vladimir Kruchinin, Sep 14 2010
a(n) = 8^n*Pochhammer(-1/4, n)/n! = -(1/4)*8^n*Gamma(n-1/4)/(Gamma(3/4)*n!). - Robert Israel, Sep 29 2014
D-finite with recurrence: n*a(n) +2*(-4*n+5)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
MAPLE
seq(-(1/4)*8^n*GAMMA(n-1/4)/(GAMMA(3/4)*n!), n=0..30); # Robert Israel, Sep 29 2014
MATHEMATICA
Table[8^n*Pochhammer[-1/4, n]/n!, {n, 0, 30}] (* G. C. Greubel, Aug 22 2019 *)
CoefficientList[Series[Surd[1-8x, 4], {x, 0, 30}], x] (* Harvey P. Dale, Dec 08 2019 *)
PROG
(PARI) for(n=0, 28, print1(2^n/n!*prod(k=0, n-1, (4*k-1)), ", "))
(Maxima) a(n):=-1/n*(if n=1 then (2)^n else sum(sum(binomial(k, j)* binomial(j, n-1-3*k+2*j)*(3/2)^(3*k-n+1-j)*(-1)^(n-1-3*k)*(1/4)^(k-j), j, 0, k)*binomial(k+n-1, n-1)*(2)^n, k, 1, n-1)); (for ) /* Vladimir Kruchinin, Sep 14 2010 */
(Maxima) a(n):=binomial(1/4, n)*(-8)^n; /* Tani Akinari, Sep 28 2014 */
(GAP) List([0..25], n->(2^n/Factorial(n))*Product([0..n-1], k->4*k-1)); # Muniru A Asiru, Apr 28 2018
(Magma) [1] cat [2^n*(&*[4*k-1: k in [0..n-1]])/Factorial(n): n in [1..30]]; // G. C. Greubel, Aug 22 2019
(Sage) [8^n*rising_factorial(-1/4, n)/factorial(n) for n in (0..30)] # G. C. Greubel, Aug 22 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
EXTENSIONS
More terms from Jason Earls, Dec 04 2001
STATUS
approved
G.f. satisfies: A(x) = 1/A(-x*A(x)^4).
+10
8
1, 2, 10, 60, 390, 2660, 18772, 138984, 1107686, 9576100, 87944188, 830857464, 7876505340, 73967614584, 685644645896, 6289047266480, 57465415636166, 528315307772004, 4947263762389484, 47785581838822232, 480797992896880788, 5058812497153271912
OFFSET
0,2
COMMENTS
Compare to: W(x) = 1/W(-x*W(x)^4) when W(x) = Sum_{n>=0} (2*n+1)^(n-1)*x^n/n!.
Compare to: B(x) = 1/B(-x*B(x)^4) when B(x) = 1/(1-8*x)^(1/4) = g.f. of A004981.
An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)^4); for example, (*) is satisfied by G(x) = W(m*x), where W(x) = Sum_{n>=0} (2*n+1)^(n-1)*x^n/n!.
FORMULA
The g.f. of this sequence is the limit of the recurrence:
(*) G_{n+1}(x) = (G_n(x) + 1/G_n(-x*G_n(x)^4))/2 starting at G_0(x) = 1+2*x.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 390*x^4 + 2660*x^5 + 18772*x^6 +...
A(x)^4 = 1 + 8*x + 64*x^2 + 512*x^3 + 4096*x^4 + 32800*x^5 + 263168*x^6 +...
PROG
(PARI) {a(n)=local(A=1+2*x); for(i=0, n, A=(A+1/subst(A, x, -x*A^4+x*O(x^n)))/2); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 29 2012
STATUS
approved
Numerators in expansion of (1-x)^{-1/4}.
+10
6
1, 1, 5, 15, 195, 663, 4641, 16575, 480675, 1762475, 13042315, 48612265, 729183975, 2748462675, 20809788825, 79077197535, 4823709049635, 18443593425075, 141400882925575, 543277076503525, 8366466978154285, 32270658344309385
OFFSET
0,3
COMMENTS
Numerators in expansion of sqrt(1/sqrt(1-4x)). - Paul Barry, Jul 12 2005
Denominators are in A088802. - Michael Somos, Aug 23 2007
LINKS
FORMULA
a(n) = prod(k=1, n, (4k-3)/k * 2^A007814(k)), proved by Mitch Harris, following a conjecture by Ralf Stephan.
a(n) = 2^(e_2((2n)!)-n)/n! Product[4k+1,{k,0,n-1}], where e_2((2n)!) is the highest power of 2 that divides (2n)! (sequence A005187). - Emanuele Munarini, Jan 25 2011
Numerators in (1-4t)^(-1/4) = 1 + t + (5/2)t^2 + (15/2)t^3 + (195/8)t^4 + (663/8)t^5 + (4641/16)t^6 + (16575/16)t^7 + ... = 1 + t + 5*t^2/2! + 45*t^3/3! + 585*t^4/4! + ... = e.g.f. for the quartic factorials A007696 (cf. A094638). - Tom Copeland, Dec 04 2013
MATHEMATICA
Table[Numerator[Binomial[-1/4, n] (-1)^n], {n, 0, 20}]
PROG
(PARI) {a(n) = if( n<0, 0, numerator( polcoeff( (1 - x +x*O(x^n))^(-1/4), n ) ) ) } /* Michael Somos, Aug 23 2007 */
KEYWORD
nonn,frac
STATUS
approved
a(n) = ( (2^n / n!) * Product_{k=0..n-1} (4*k + 1) )^2.
+10
5
1, 4, 100, 3600, 152100, 7033104, 344622096, 17582760000, 924193822500, 49701090010000, 2721631688947600, 151241747739534400, 8507348310348810000, 483459012855561960000, 27715027900230072360000, 1600820011517288979513600, 93072675982122379574532900
OFFSET
0,2
COMMENTS
Cayley (1878) refers to Gauss, Werke, t. iii, p. 424 for a slightly different form of a square of a hypergeometric series being hypergeometric. - Michael Somos, Jun 25 2012
REFERENCES
A. Cayley, An Identity, Messenger of Mathematics, 7 (1878), p. 69
LINKS
Robert S. Maier, On Rationally Parametrized Modular Equations, arXiv:math/0611041 [math.NT], 2006.
FORMULA
Expansion of K(k) / (Pi/2) in powers of (k * k'/4)^2, where K(k) is the complete elliptic integral of first kind evaluated at modulus k.
Expansion of 1 / AGM( 1, (1 - 16*x)^(1/2) ) in powers of x * (1 - 16*x) where AGM() is the arithmetic-geometric mean.
G.f.: F(1/4, 1/4; 1; 64*x).
a(n) = A004981(n)^2. Convolution square is A002897.
a(n) ~ 64^n / (Gamma(1/4)^2 * n^(3/2)). - Vaclav Kotesovec, Sep 08 2015
From Gheorghe Coserea, Aug 26 2016: (Start)
n^2 * a(n) = 4*(4*n-3)^2 * a(n-1), with a(0) = 1.
0 = 16*x*(x+64)*y'' + 8*(3*x+128)*y' + y, where y(x) = A(x/-4096). (End)
EXAMPLE
G.f. = 1 + 4*x + 100*x^2 + 3600*x^3 + 152100*x^4 + 7033104*x^5 + ...
MATHEMATICA
From Michael Somos, Jun 25 2012 (Start)
a[ n_] := If[ n < 0, 0, (Pochhammer[ 1/4, n] 8^n / n!)^2];
a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/4, 1/4, 1, 64 x], {x, 0, n}];
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 1/2, 1/2}, {1, 1}, 64 x]^(1/2), {x, 0, n}];
(End)
Join[{1}, RecurrenceTable[{a[1] == 4, a[n] == (4 (4 n - 3)^2 a[n-1] / n^2)}, a, {n, 20}]] (* Vincenzo Librandi, Aug 26 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, prod( k=1, n, (8*k - 6) / k)^2)};
(PARI) {a(n) = my(A); if( n<1, n==0, A = x * O(x^n); polcoeff( subst( 1 / agm(1, sqrt(1 - 16*x + A) ), x, serreverse( x*(1 - 16*x) + A )), n))};
(PARI)
seq(N) = {
my(a = vector(N)); a[1] = 4;
for (n=2, N, a[n] = 4*(4*n-3)^2*a[n-1]/n^2);
concat(1, a);
};
seq(15) \\ Gheorghe Coserea, Aug 26 2016
(Magma) [1] cat [n le 1 select 4 else (4*(4*n-3)^2*Self(n-1)/ n^2): n in [1..30]]; // Vincenzo Librandi, Aug 26 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 14 2007
STATUS
approved
Expansion of 1/(1 - 16*x)^(1/8).
+10
4
1, 2, 18, 204, 2550, 33660, 460020, 6440280, 91773990, 1325624300, 19354114780, 285033326760, 4227994346940, 63094684869720, 946420273045800, 14259398780556720, 215673406555920390, 3273161111260438860, 49824785804742235980, 760483572809223601800
OFFSET
0,2
LINKS
FORMULA
a(n) = (2^n/n!) * Product_{k=0..n-1} (8*k + 1).
a(n) ~ 16^n/(GAMMA(1/8)*n^(7/8)). - Vaclav Kotesovec, Jul 24 2013
EXAMPLE
G.f.: A(x) = 1 + 2*x + 18*x^2 + 204*x^3 + 2550*x^4 + 33660*x^5 + ...
where
A(x)^8 = 1 + 16*x + 256*x^2 + 4096*x^3 + 65536*x^4 + ... + 16^n*x^n + ...
Also,
A(x)^4 = 1 + 8*x + 96*x^2 + 1280*x^3 + 17920*x^4 + 258048*x^5 + ... + 4^n*A000984(n)*x^n + ...
A(x)^2 = 1 + 4*x + 40*x^2 + 480*x^3 + 6240*x^4 + 84864*x^5 + ... + 2^n*A004981(n)*x^n + ...
MAPLE
seq(coeff(series(1/(1-16*x)^(1/8), x, 50), x, n+1), n=0..20); # Muniru A Asiru, Jun 23 2018
MATHEMATICA
CoefficientList[Series[1/(1-16*x)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
PROG
(PARI) {a(n)=polcoeff(1/(1-16*x +x*O(x^n))^(1/8), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=(2^n/n!)*prod(k=0, n-1, 8*k + 1)}
for(n=0, 30, print1(a(n), ", "))
(GAP) List([0..20], n->(2^n/Factorial(n))*Product([0..n-1], k->8*k+1)); # Muniru A Asiru, Jun 23 2018
CROSSREFS
(1-b*x)^(-1/A003557(b)): A000984 (b=4), A004981 (b=8), A004987 (b=9), A098658 (b=12), this sequence (b=16), A034688 (b=25), A298799 (b=27), A004993 (b=36), A034835 (b=49).
Cf. A301271.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 23 2013
STATUS
approved

Search completed in 0.024 seconds