[go: up one dir, main page]

login
Search: a004112 -id:a004112
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerators of convergents to Pi.
(Formerly M3097 N1255)
+10
45
0, 1, 3, 22, 333, 355, 103993, 104348, 208341, 312689, 833719, 1146408, 4272943, 5419351, 80143857, 165707065, 245850922, 411557987, 1068966896, 2549491779, 6167950454, 14885392687, 21053343141, 1783366216531, 3587785776203, 5371151992734, 8958937768937
OFFSET
0,3
COMMENTS
From Alexander R. Povolotsky, Apr 09 2012: (Start)
K. S. Lucas found, by brute-force search, using Maple programming, several different variants of integral identities which relate each of several first Pi convergents (A002485(n)/A002486(n)) to Pi.
I conjecture the following identity below, which represents a generalization of Stephen Lucas's experimentally obtained identities:
(-1)^n*(Pi-A002485(n)/A002486(n)) = (1/abs(i)*2^j)*Integral_{x=0..1} (x^l*(1-x)^m*(k+(k+i)*x^2)/(1+x^2)) dx where {i, j, k, l, m} are some integers (see the Mathematics Stack Exchange link below).
(End)
From a(1)=1 on also: Numbers for which |tan x| decreases monotonically to zero, in the same spirit as A004112, A046947, ... - M. F. Hasler, Apr 01 2013
See also A332095 for n*|tan n| < 1. - M. F. Hasler, Sep 13 2020
REFERENCES
P. Beckmann, A History of Pi. Golem Press, Boulder, CO, 2nd ed., 1971, p. 171 (but beware errors).
CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
P. Finsler, Über die Faktorenzerlegung natuerlicher Zahlen, Elemente der Mathematik, 2 (1947), 1-11, see p. 7.
K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000; p. 293.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel Mondot, Table of n, a(n) for n = 0..1947 (terms 0..201 from T. D. Noe, terms 202..1000 from G. C. Greubel).
E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
Marc Daumas, Des implantations differentes ..., see p. 8. [Broken link]
Henryk Fuks, Adam Adamandy Kochanski's approximations of Pi: reconstruction of the algorithm, arXiv preprint arXiv:1111.1739 [math.HO], 2011-2014. Math. Intelligencer, Vol. 34 (No. 4), 2012, pp. 40-45.
G. P. Michon, Continued Fractions
Eric Weisstein's World of Mathematics, Pi
Eric Weisstein's World of Mathematics, Pi Continued Fraction
Eric Weisstein's World of Mathematics, Pi Approximations
EXAMPLE
The convergents are 0, 1, 3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, 208341/66317, 312689/99532, 833719/265381, 1146408/364913, 4272943/1360120, 5419351/1725033, 80143857/25510582, 165707065/52746197, 245850922/78256779, 411557987/131002976, 1068966896/340262731, 2549491779/811528438, ... = A002485/A002486
MAPLE
Digits := 60: E := Pi; convert(evalf(E), confrac, 50, 'cvgts'): cvgts;
MATHEMATICA
Join[{0, 1}, Numerator @ Convergents[Pi, 29]] (* Jean-François Alcover, Apr 08 2011 *)
PROG
(PARI) contfracpnqn(cf=contfrac(Pi), #cf)[1, ] \\ M. F. Hasler, Apr 01 2013, simplified Oct 13 2020
(PARI) e=9e9; for(n=1, 1e9, abs(tan(n))<e && !print1(n", ") && e=abs(tan(n))) \\ Illustration of |tan a(n)| -> 0 monotonically. - M. F. Hasler, Apr 01 2013
CROSSREFS
Cf. A002486 (denominators), A046947, A072398/A072399.
Cf. A096456 (numerators of convergents to Pi/2).
KEYWORD
nonn,easy,nice,frac
EXTENSIONS
Extended and corrected by David Sloan, Sep 23 2002
STATUS
approved
|sin(n)| (or |tan(n)| or |sec(n)|) decreases monotonically to 0; also |cos(n)| (or |cosec(n)| or |cot(n)|) increases.
+10
18
1, 3, 22, 333, 355, 103993, 104348, 208341, 312689, 833719, 1146408, 4272943, 5419351, 80143857, 165707065, 245850922, 411557987, 1068966896, 2549491779, 6167950454, 14885392687, 21053343141, 1783366216531, 3587785776203
OFFSET
0,2
COMMENTS
Also numerators of convergents to Pi (A002486 gives denominators) beginning at 1.
Integer circumferences of circles with a(0)=1 and a(n+1) is the smallest integer circumference with corresponding diameter nearer an integer than is the diameter of the circle with circumference a(n). See PARI program. - Rick L. Shepherd, Oct 06 2007
REFERENCES
K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000; p. 293.
Suggested by a question from Alan Walker (Alan_Walker(AT)sabre.com)
LINKS
Eric Weisstein's World of Mathematics, Cosecant
Eric Weisstein's World of Mathematics, Flint Hills Series
EXAMPLE
|sin(4272943)| = 0.000000549579497810490800503139..., |tan(4272943)| = 0.000000549579497810573797346111..., |sec(4272943)| = 1.00000000000015101881221...
|cos(4272943)| = 0.999999999999848981187793172965367089856..., |cosec(4272943)| = 1819572.97167010734684889..., |cot(4272943)| = 1819572.97166983255709999...
MAPLE
Digits := 50; M := 10000; a := [ 1 ]; R := sin(1.); for n from 2 to M do t1 := evalf(sin(n)); if abs(t1)<R then R := abs(t1); a := [ op(a), n ]; fi; od: a;
with(numtheory): cf := cfrac (Pi, 100): seq(nthnumer(cf, i), i=-1..22 ); # Zerinvary Lajos, Feb 07 2007
MATHEMATICA
z={}; current=1; Do[ If[ Abs[ Sin[ n]] < current, AppendTo[ z, current=Abs[ Sin[ n]]]], {n, 1, 10^7}]; z (* or *)
Join[{1}, Table[ Numerator[ FromContinuedFraction[ ContinuedFraction[Pi, n]]], {n, 1, 23}]] (* Wouter Meeussen *)
Join[{1}, Convergents[Pi, 30]//Numerator] (* Harvey P. Dale, May 05 2019 *)
PROG
(PARI) /* Program calculates a(n) without using sin or continued fraction functions */ {d=1/Pi; print1("1, "); for(circum=2, 500000000, dm=circum/Pi; dmin=min(dm-floor(dm), ceil(dm)-dm); if(dmin<d, print1(circum, ", "); d=dmin))} /* or could use dmin=min(frac(dm), 1-frac(dm)) above */ \\ Rick L. Shepherd, Oct 06 2007
CROSSREFS
Cf. A004112, A049946. See also A002485, which is the same sequence but begins at 0.
KEYWORD
nonn,nice
EXTENSIONS
More terms from Wouter Meeussen
Further terms from Michel ten Voorde
Edited and extended by Robert G. Wilson v, Jan 28 2003
Typo in examples fixed by Paolo Bonzini, Mar 21 2012
STATUS
approved
Values of positive integer i such that floor(tan(i)) = 1.
+10
12
1, 4, 23, 26, 45, 48, 67, 70, 89, 92, 111, 114, 133, 136, 155, 158, 177, 180, 183, 199, 202, 205, 221, 224, 227, 243, 246, 249, 265, 268, 271, 290, 293, 312, 315, 334, 337, 356, 359, 378, 381, 400, 403, 422, 425, 444, 447, 466, 469, 488, 491, 510, 513, 532, 535, 538, 554, 557, 560, 576, 579, 582, 598, 601, 604, 620
OFFSET
1,2
COMMENTS
The sequence is the first result in the chain of iteration leading to the ultimate sequence A258024.
Sequence terms are also the roots of A000503(i)=1, starting from i=1.
This is a subsequence of A258024 from which this differs for the first time at n=11, where a(11) = 111, while A258024(11) = 105, the term not included in this sequence. Note that A000503(105) = 4, a term which is included in this sequence. - Antti Karttunen, Oct 30 2017
Numbers k such that Pi/4 <= k - m*Pi < arctan(2) for some m. - Robert Israel, Nov 06 2017
LINKS
EXAMPLE
The values of floor(tan(i)), starting from i=0, are given in A000503. Those i, for which floor(tan(i))=1 is true, are the roots of this equation. Thus the roots are the positions of 1 in A000503(i>0).
For n=1, i=1; a(1)=1.
For n=2, i=4; a(2)=4.
For n=3, i=23; a(3)=23.
MATHEMATICA
rootsp = Flatten[Position[Table[Floor[Tan[i]], {i, 1, 10^6}], 1]
(*a(n) = rootsp[[n]]*)
Alternatively:
rootsp = {}; Do[If[Floor[Tan[n]] == 1, AppendTo[rootsp, n]], {n, 1, 10^6}]
rootsp (*a(n) = rootsp[[n]]*)
Select[ Range@ 622, Floor@ Tan@ # == 1 &] (* Robert G. Wilson v, Nov 06 2017 *)
PROG
(PARI) isok(n) = floor(tan(n)) == 1; \\ Michel Marcus, Oct 24 2017
(PARI) first(n) = {my(res = vector(n), i = 0, pi = [Pi, Pi], sols = [atan(1), atan(2)]); while(1, for(j = ceil(sols[1]), floor(sols[2]), i++; if(i>n, return(res)); res[i] = j); sols+=[Pi(), Pi()])} \\ David A. Corneth, Oct 24 2017
KEYWORD
nonn
AUTHOR
V.J. Pohjola, Oct 15 2017
STATUS
approved
Numbers k where tan(k) decreases monotonically to 0 (or cot(k) increases).
+10
2
1, 4, 7, 10, 13, 16, 19, 22, 355, 104348, 312689, 1146408, 5419351, 85563208, 165707065, 411557987, 1480524883, 2549491779, 8717442233, 14885392687, 35938735828, 56992078969, 78045422110, 99098765251, 120152108392
OFFSET
0,2
COMMENTS
From Jon E. Schoenfield, Aug 10 2006: (Start)
The approach described uses continued fractions containing an even number of terms of which all but the last term are fixed at the values those terms take in the continued fraction for Pi; the final term is initialized at 1 and incremented by 1 each time until it reaches the value taken by that term in the continued fraction for Pi. The semiconvergents and convergents thus obtained are increasingly accurate approximations for Pi, all of which approach Pi from values larger than Pi. Thus the angles whose sizes (in radians) are the numerators of those semiconvergents and convergents approach (from the positive side) integer multiples of Pi, so the tangents of those angles approach zero from positive values.
If we were to use the same approach but with continued fractions having an odd number of terms, i.e., [3] = 3/1; [3;7,i], i=1..15; [3;7,15,1,i], i=1..292; etc., then the semiconvergents and convergents obtained would likewise be increasingly accurate approximations for Pi, but they would approach Pi from values smaller than Pi, so the angles whose sizes (in radians) are the numerators of those semiconvergents and convergents would approach (from the negative side) integer multiples of Pi and thus the tangents of those angles would approach zero from negative values.
Terms after a(0) = 1 are the numerators of the fractions obtained by evaluating all those convergents and semiconvergents of the continued fraction for Pi (A001203) that, as written below, have an even number of partial quotients:
[3;i], i=1..7 (6 semiconvergents and 1 convergent)
[3;7,15,1]
[3;7,15,1,292,1]
[3;7,15,1,292,1,1,1]
[3;7,15,1,292,1,1,1,2,1]
[3;7,15,1,292,1,1,1,2,1,3,1]
[3;7,15,1,292,1,1,1,2,1,3,1,14,i], i=1..2
[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1]
[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,i], i=1..2
[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,i], i=1..2
[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,i], i=1..84, etc. (End)
See also A002485 which has a similar property (numerators of convergents to pi = numbers for which |tan a(n)| decreases to zero). - M. F. Hasler, Apr 01 2013
EXAMPLE
a(1) is the numerator of [3;1] = 3 + 1/1 = 4/1
a(2) is the numerator of [3;2] = 3 + 1/2 = 7/2
...
a(7) is the numerator of [3;7] = 3 + 1/7 = 22/7
a(8) is the numerator of [3;7,15,1] = 3 + 1/(7 + 1/(15 + 1/1)) = 355/113
a(9) is the numerator of [3;7,15,1,292,1] = 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + 1/1)))) = 104348/33215
MATHEMATICA
s = Tan[1]; Do[t = Tan[n]; If[t > 0 && t <= s, Print[n]; s = t], {n, 10^9}] (* Ryan Propper, Jul 27 2006 *)
PROG
(PARI) e=2; for(n=1, 1e9, tan(n)>0 && tan(n)<e && !print1(n", ") && e=tan(n)) \\ - M. F. Hasler, Apr 01 2013
CROSSREFS
Cf. A001203, A004112, A002485 (|tan a(n)|->0).
KEYWORD
nonn
EXTENSIONS
More terms from Michel ten Voorde
2 more terms from Ryan Propper, Jul 27 2006
More terms from Jon E. Schoenfield, Aug 10 2006
Corrected by Don Reble, Nov 20 2006
STATUS
approved
Positive integers m where |m*sin(m)| increases to a new record.
+10
2
1, 2, 4, 5, 8, 11, 14, 17, 20, 23, 24, 27, 30, 33, 36, 39, 42, 46, 49, 52, 55, 58, 61, 68, 71, 74, 77, 80, 83, 90, 93, 96, 99, 102, 105, 115, 118, 121, 124, 127, 137, 140, 143, 146, 159, 162, 165, 168, 181, 184, 187, 190, 206, 209, 212, 228, 231, 234, 250, 253
OFFSET
1,2
LINKS
EXAMPLE
|a(n)*sin(a(n))|_{n=1..5} = 0.8415..., 1.819..., 3.027..., 4.794..., 7.915... .
CROSSREFS
First differences give A307558.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 12 2019
STATUS
approved
Numbers n where |sinc(n)| decreases monotonically to 0 (where sinc(x)=sin(x)/x).
+10
1
0, 1, 2, 3, 6, 9, 12, 13, 16, 19, 22, 44, 66, 88, 110, 132, 154, 176, 179, 201, 223, 245, 267, 289, 311, 333, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 3550, 3905, 4260, 4615, 4970, 5325, 5680, 6035, 6390, 6745, 7100, 7455, 7810, 8165, 8520, 8875
OFFSET
1,3
MATHEMATICA
a = {0, 1}; For[n = 2, n < 10000, n++, If[Abs[Sin[n]/n] < Abs[Sin[a[[ -1]]]/a[[ -1]]], AppendTo[a, n]]]; a (* Stefan Steinerberger, Oct 08 2007 *)
PROG
(PARI) sinc(x)={ sin(x)/x ; } A131975(nmax)={ local(n=1, aprev=1) ; print1(0) ; while(n<nmax, if( abs(sinc(n)) < aprev, print1(", ", n) ; aprev=abs(sinc(n)) ; ) ; n++ ; ) ; } A131975(16000) ; \\ R. J. Mathar, Oct 07 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
Laurent A. Guerin (laurent.a.guerin(AT)orange.fr), Oct 06 2007
EXTENSIONS
More terms from R. J. Mathar and Stefan Steinerberger, Oct 07 2007
STATUS
approved

Search completed in 0.011 seconds