[go: up one dir, main page]

login
Search: a004062 -id:a004062
     Sort: relevance | references | number | modified | created      Format: long | short | data
Least k > 2 such that (n^k - 1)/(n-1) is prime, or 0 if no such prime exists.
+10
9
3, 3, 0, 3, 3, 5, 3, 0, 19, 17, 3, 5, 3, 3, 0, 3, 25667, 19, 3, 3, 5, 5, 3, 0, 7, 3, 5, 5, 5, 7, 0, 3, 13, 313, 0, 13, 3, 349, 5, 3, 1319, 5, 5, 19, 7, 127, 19, 0, 3, 4229, 103, 11, 3, 17, 7, 3, 41, 3, 7, 7, 3, 5, 0, 19, 3, 19, 5, 3, 29, 3, 7, 5, 5, 3, 41, 3, 3, 5, 3, 0, 23, 5, 17, 5, 11, 7, 61, 3, 3
OFFSET
2,1
COMMENTS
a(n) = A084740(n) for all n except n = p-1, where p is an odd prime, for which A084740(n) = 2.
All nonzero terms are odd primes.
a(n) = 0 for n = {4,9,16,25,32,36,49,64,81,100,121,125,144,...}, which are the perfect powers with exceptions of the form n^(p^m) where p>2 and (n^(p^(m+1))-1)/(n^(p^m)-1) are prime and m>=1 (in which case a(n^(p^m))=p). - Max Alekseyev, Jan 24 2009
a(n) = 3 for n in A002384, i.e., for n such that n^2 + n + 1 is prime.
a(152) > 20000. - Eric Chen, Jun 01 2015
a(n) is the least number k such that (n^k - 1)/(n-1) is a Brazilian prime, or 0 if no such Brazilian prime exists. - Bernard Schott, Apr 23 2017
These corresponding Brazilian primes are in A285642. - Bernard Schott, Aug 10 2017
a(152) = 270217, see the top PRP link. - Eric Chen, Jun 04 2018
a(184) = 16703, a(200) = 17807, a(210) = 19819, a(306) = 26407, a(311) = 36497, a(326) = 26713, a(331) = 25033; a(185) > 66337, a(269) > 63659, a(281) > 63421, and there are 48 unknown a(n) for n <= 1024. - Eric Chen, Jun 04 2018
Six more terms found: a(522)=20183, a(570)=12907, a(684)=22573, a(731)=15427, a(820)=12043, a(996)=14629. - Michael Stocker, Apr 09 2020
LINKS
Max Alekseyev and Eric Chen, Table of n, a(n) for n = 2..184 (terms 2..151 from Max Alekseyev)
Eric Chen, Table of n, a(n) for n = 2..1024 status (updated by Jinyuan Wang)
H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
Eric Weisstein's World of Mathematics, Repunit
EXAMPLE
a(7) = 5 because (7^5 - 1)/6 = 2801 = 11111_7 is prime and (7^k - 1)/6 = 1, 8, 57, 400 for k = 1, 2, 3, 4. - Bernard Schott, Apr 23 2017
MATHEMATICA
Table[Function[m, If[m > 0, k = 3; While[! PrimeQ[(m^k - 1)/(m - 1)], k++]; k, 0]]@ If[Set[e, GCD @@ #[[All, -1]]] > 1, {#, IntegerExponent[n, #]} &@ Power[n, 1/e] /. {{k_, m_} /; Or[Not[PrimePowerQ@ m], Prime@ m, FactorInteger[m][[1, 1]] == 2] :> 0, {k_, m_} /; m > 1 :> n}, n] &@ FactorInteger@ n, {n, 2, 17}] (* Michael De Vlieger, Apr 24 2017 *)
PROG
(PARI) a052409(n) = my(k=ispower(n)); if(k, k, n>1)
a052410(n) = if (ispower(n, , &r), r, n)
is(n) = issquare(n) || (ispower(n) && !ispseudoprime((n^a052410(a052409(n))-1)/(n-1)))
a(n) = if(is(n), 0, forprime(p=3, 2^16, if(ispseudoprime((n^p-1)/(n-1)), return(p)))) \\ Eric Chen, Jun 01 2015, corrected by Eric Chen, Jun 04 2018, after Charles R Greathouse IV in A052409 and Michel Marcus in A052410
CROSSREFS
Cf. A002384, A049409, A100330, A162862, A217070-A217089. (numbers b such that (b^p-1)/(b-1) is prime for prime p = 3 to 97)
A126589 gives locations of zeros.
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Feb 20 2007
EXTENSIONS
a(18) = 25667 found by Henri Lifchitz, Sep 26 2007
STATUS
approved
Numbers n such that (23^n - 1)/22 is prime.
+10
9
5, 3181, 61441, 91943, 121949, 221411
OFFSET
1,1
COMMENTS
No other terms < 100000.
MATHEMATICA
Select[Prime[Range[100]], PrimeQ[(23^#-1)/22]&]
PROG
(PARI) is(n)=ispseudoprime((23^n-1)/22) \\ Charles R Greathouse IV, Jun 13 2017
KEYWORD
hard,nonn,more
AUTHOR
Robert Price, Jan 20 2012
EXTENSIONS
a(5)=121949 corresponds to a probable prime discovered by Paul Bourdelais, Oct 19 2017
a(6)=221411 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020
STATUS
approved
Numbers n such that (43^n - 1)/42 is prime.
+10
7
5, 13, 6277, 26777, 27299, 40031, 44773, 194119
OFFSET
1,1
COMMENTS
a(8) > 10^5. - Robert Price, Apr 12 2014
LINKS
H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
MAPLE
A240765:=n->`if`(isprime((43^n - 1)/42), n, NULL); seq(A240765(n), n=1..100000); # Wesley Ivan Hurt, Apr 12 2014
MATHEMATICA
Select[Prime[Range[100000]], PrimeQ[(43^#-1)/42]&]
PROG
(PARI) is(n)=ispseudoprime((43^n-1)/42) \\ Charles R Greathouse IV, Feb 20 2017
KEYWORD
hard,more,nonn
AUTHOR
Robert Price, Apr 12 2014
EXTENSIONS
a(8) from Paul Bourdelais, Aug 04 2020
STATUS
approved
Least k such that Phi(k,n), the k-th cyclotomic polynomial evaluated at n, is prime.
+10
5
2, 2, 1, 1, 3, 1, 5, 1, 6, 2, 9, 1, 5, 1, 3, 2, 3, 1, 19, 1, 3, 2, 5, 1, 6, 4, 3, 2, 5, 1, 7, 1, 3, 6, 21, 2, 10, 1, 6, 2, 3, 1, 5, 1, 19, 2, 10, 1, 14, 3, 6, 2, 11, 1, 6, 4, 3, 2, 3, 1, 7, 1, 5, 204, 12, 2, 6, 1, 3, 2, 3, 1, 5, 1, 3, 6, 3, 2, 5, 1, 6, 2, 5, 1, 5, 11, 7, 2, 3, 1, 6, 12, 7, 4, 7, 2, 17, 1, 3
OFFSET
1,1
COMMENTS
Note that a(n)=1 iff n-1 is prime because Phi(1,x)=x-1. For n<2048, we have the bound a(n)<251. However, a(2048) is greater than 10000. Is a(n) defined for all n? For fixed n, there are many sequences listing the k that make Phi(k,n) prime: A000043, A028491, A004061, A004062, A004063, A004023, A005808, A016054, A006032, A006033, A006034, A006035.
MATHEMATICA
Table[k=1; While[ !PrimeQ[Cyclotomic[k, n]], k++ ]; k, {n, 100}]
CROSSREFS
Cf. A117544 (least k such that Phi(n, k) is prime).
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 28 2006
STATUS
approved
Primes of the form (6^m - 1)/5.
+10
5
7, 43, 55987, 7369130657357778596659, 3546245297457217493590449191748546458005595187661976371
OFFSET
1,1
COMMENTS
Prime repunits in base 6 whose representation consists of m 1's. The exponents m are in A004062. a(5) and a(6) have 55 and 99 decimal digits, respectively.
LINKS
FORMULA
a(n) = (6^A004062(n) - 1)/5.
EXAMPLE
a(2) = (6^A004062(2) - 1)/5 = (6^3 - 1)/5 = 215/5 = 43, which is 111_6.
MATHEMATICA
Select[Table[(6^n-1)/5, {n, 0, 2000}], PrimeQ] (* Vincenzo Librandi, Dec 09 2011 *)
PROG
(Magma) [a: n in [1..200] | IsPrime(a) where a is (6^n-1) div 5 ]; // Vincenzo Librandi, Dec 09 2011
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Sep 07 2009
STATUS
approved
Numbers n such that (45^n - 1)/44 is prime.
+10
5
19, 53, 167, 3319, 11257, 34351, 216551
OFFSET
1,1
COMMENTS
a(7) > 10^5.
Numbers corresponding to a(4)-a(6) are probable primes.
All terms are prime.
LINKS
Harvey Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
MAPLE
A242797:=n->`if`(isprime((45^n - 1)/44), n, NULL); seq(A242797(n), n=1..100000); # Wesley Ivan Hurt, Apr 12 2014
MATHEMATICA
Select[Prime[Range[100000]], PrimeQ[(45^# - 1)/44] &]
PROG
(PARI) is(n)=ispseudoprime((45^n-1)/44) \\ Charles R Greathouse IV, Feb 20 2017
KEYWORD
hard,more,nonn
AUTHOR
Robert Price, May 22 2014
EXTENSIONS
a(7)=216551 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020
STATUS
approved
Numbers n such that (46^n - 1)/45 is prime.
+10
5
2, 7, 19, 67, 211, 433, 2437, 2719, 19531
OFFSET
1,1
COMMENTS
a(10) > 10^5.
Numbers corresponding to a(7)-a(9) are probable primes.
All terms are prime.
LINKS
Harvey Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
MAPLE
A243279:=n->`if`(isprime((46^n - 1)/45), n, NULL); seq(A243279(n), n=1..100000); # Wesley Ivan Hurt, Apr 12 2014
MATHEMATICA
Select[Prime[Range[100000]], PrimeQ[(46^# - 1)/45] &]
PROG
(PARI) is(n)=ispseudoprime((46^n-1)/45) \\ Charles R Greathouse IV, May 22 2017
KEYWORD
hard,more,nonn
AUTHOR
Robert Price, Jun 02 2014
STATUS
approved
Numbers n such that (48^n - 1)/47 is prime.
+10
3
19, 269, 349, 383, 1303, 15031, 200443
OFFSET
1,1
COMMENTS
a(7) > 10^5.
All terms are prime.
LINKS
Harvey Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
MAPLE
A245237:=n->`if`(isprime((48^n - 1)/47), n, NULL); seq(A245237(n), n=1..100000); # Wesley Ivan Hurt, Apr 12 2014
MATHEMATICA
Select[Prime[Range[100000]], PrimeQ[(48^# - 1)/47] &]
PROG
(PARI) is(n)=ispseudoprime((48^n-1)/47) \\ Charles R Greathouse IV, Jun 06 2017
KEYWORD
hard,more,nonn
AUTHOR
Robert Price, Jul 14 2014
EXTENSIONS
a(7) corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020
STATUS
approved
Numbers n such that (50^n - 1)/49 is prime.
+10
2
3, 5, 127, 139, 347, 661, 2203, 6521, 210319
OFFSET
1,1
COMMENTS
a(9) > 10^5.
All terms are prime.
LINKS
Harvey Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
MAPLE
A245442:=n->`if`(isprime((50^n - 1)/49), n, NULL); seq(A245442(n), n=1..100000); # Wesley Ivan Hurt, Apr 12 2014
MATHEMATICA
Select[Prime[Range[100000]], PrimeQ[(50^# - 1)/49] &]
PROG
(PARI) is(n)=ispseudoprime((50^n-1)/49) \\ Charles R Greathouse IV, Jun 13 2017
KEYWORD
hard,more,nonn
AUTHOR
Robert Price, Jul 22 2014
EXTENSIONS
a(9)=210319 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020
STATUS
approved
Numbers n such that (39^n - 1)/38 is prime.
+10
1
349, 631, 4493, 16633, 36341
OFFSET
1,1
LINKS
Harvey Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
MATHEMATICA
Select[Prime[Range[100000]], PrimeQ[(39^#-1)/38]&]
PROG
(PARI) is(n)=ispseudoprime((39^n-1)/38) \\ Charles R Greathouse IV, Jun 13 2017
KEYWORD
hard,more,nonn
AUTHOR
Robert Price, Apr 04 2012
STATUS
approved

Search completed in 0.012 seconds