[go: up one dir, main page]

login
Search: a004024 -id:a004024
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 12*H(n) where H() is the Hurwitz class number.
+10
19
-1, 0, 0, 4, 6, 0, 0, 12, 12, 0, 0, 12, 16, 0, 0, 24, 18, 0, 0, 12, 24, 0, 0, 36, 24, 0, 0, 16, 24, 0, 0, 36, 36, 0, 0, 24, 30, 0, 0, 48, 24, 0, 0, 12, 48, 0, 0, 60, 40, 0, 0, 24, 24, 0, 0, 48, 48, 0, 0, 36, 48, 0, 0, 60, 42, 0, 0, 12, 48, 0, 0, 84, 36, 0, 0
OFFSET
0,4
COMMENTS
Coefficients of q-expansion of Eisenstein series G_{3/2}(tau) multiplied by 12. - N. J. A. Sloane, Mar 16 2019
LINKS
K. Bringmann and J. Lovejoy, Overpartitions and class numbers of binary quadratic forms, arXiv:0712.0631 [math.NT], 2007. See page 5, equation (1.12).
D. Zagier, Modular Forms of One Variable, Notes based on a course given in Utrecht, 1991. See page 50.
FORMULA
a(n) = 12 * A058305(n) / A058306(n). a(4*n + 1) = a(4*n + 2) = 0. a(3*n + 4) = 6 * A259827(n).
a(4*n + 3) = 4 * A130695(n). a(8*n + 3) = A005886(n) = 2 * A005869(n) = 4 * A008443(n). a(12*n + 7) = 12 * A259655(n).
a(16*n + 4) = 6 * A045834(n) = 3 * A005876(n). a(16*n + 8) = 12 * A045828(n) = 6 * A005884(n) = 3 * A005877(n).
a(24*n + 3) = 4 * A213627(n). a(24*n + 7) = 12 * A185220(n). a(24*n + 11) = 12 * A213617(n). a(24*n + 19) = 12 * A181648(n). a(24*n + 23) = 12 * A188569(n+1).
a(32*n + 4) = 6 * A213022(n). a(32*n + 8) = 12 * A213625(n). a(32*n + 12) = 16 * A008443(n) = 8 * A005869(n) = 4 * A005886(n) = 2 * A005878(n). a(32*n + 20) = 24 * A045831(n) = 6 * A004024(n). a(32*n + 24) = 24 * A213624(n).
G.f.: -2 * (Sum_{k in Z} (-1)^k * x^(k*k + k) / (1 + (-x)^k)^2) / (Sum_{k in Z} x^k^2) - 2 * (Sum_{k in Z} (-1)^k * x^(k^2 + 2*k) / (1 + x^(2*k))^2) / (Sum_{k in Z} (-x)^k^2).
a(n) >= 0 if n > 0. - Michael Somos, Feb 04 2022
EXAMPLE
G.f. = -1 + 4*x^3 + 6*x^4 + 12*x^7 + 12*x^8 + 12*x^11 + 16*x^12 + 24*x^15 + ...
MATHEMATICA
terms = 100; gf[m_] := With[{r = Range[-m, m]}, -2 Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, r}]/EllipticTheta[3, 0, x] - 2 Sum[(-1)^k*x^(k^2 + 2 k)/(1 + x^(2 k))^2, {k, r}]/EllipticTheta[3, 0, -x]]; gf[terms // Sqrt // Ceiling] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Apr 02 2017 *)
a[ n_] := If[ n<1, -Boole[n==0], With[{m = Floor[(-1 + Sqrt[1 + 4*n])/2]}, -2*SeriesCoefficient[ Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, -m-1, m}] / EllipticTheta[3, 0, x] + Sum[(-1)^k*x^(k^2 + 2*k)/(1 + x^(2*k))^2, {k, -m-2, m}]/ EllipticTheta[3, 0, -x], {x, 0, n}]]]; (* Michael Somos, Feb 04 2022 *)
PROG
(PARI) {a(n) = 12 * qfbhclassno(n)};
(PARI) {a(n) = my(D, f); 12 * if( n<1, (n==0)/-12, [D, f] = core(-n, 1); if( D%4>1 && !(f%2), D*=4; f/=2); if( D%4<2, qfbclassno(D) / max(1, D+6), 0) * sumdiv(f, d, moebius(d) * kronecker(D, d) * sigma(f/d)))};
KEYWORD
sign
AUTHOR
Michael Somos, Jul 05 2015
STATUS
approved
Number of 4-core partitions of n.
+10
14
1, 1, 2, 3, 1, 3, 3, 3, 4, 4, 2, 2, 7, 3, 5, 6, 2, 4, 7, 3, 4, 7, 5, 8, 5, 4, 4, 8, 5, 6, 7, 2, 9, 11, 3, 8, 9, 4, 6, 5, 7, 5, 14, 7, 4, 10, 5, 10, 11, 3, 9, 10, 5, 8, 10, 4, 6, 15, 8, 9, 10, 6, 8, 15, 6, 10, 6, 5, 15, 9, 6, 8, 14, 8, 6, 13, 5, 16, 18, 7, 8, 7, 9, 6, 15, 6, 12, 17, 5, 8, 15, 7, 12
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Conjecturally Sum_n a(n)q^(8n+5) equals theta series of sodalite. - Fred Lunnon, Mar 05 2015
Dickson writes that Liouville proved several related theorems about sums of triangular numbers. - Michael Somos, Feb 10 2020
REFERENCES
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. II, p. 23.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
M. Hirschhorn, and J. Sellers, Some amazing facts about 4-cores, J. Num. Thy. 60 (1996), 51-69.
K. Ono, and L. Sze, 4-core partitions and class numbers, Acta. Arith. 80 (1997), 249-272.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
eta(32*z)^4/eta(8*z) = Sum_{x, y, z} q^(x^2+2*y^2+2*z^2), x, y, z >= 1 and odd.
From Michael Somos, Mar 24 2003: (Start)
Euler transform of period 4 sequence [1, 1, 1, -3, ...].
Expansion of q^(-5/8) * eta(q^4)^4/eta(q) in powers of q.
(End)
Number of solutions to n=t1+2*t2+2*t3 where t1, t2, t3 are triangular numbers. - Michael Somos, Jan 02 2006
G.f.: Product_{k>0} (1-q^(4*k))^4/(1-q^k).
Expansion of psi(q) * psi(q^2)^2 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Sep 02 2008
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + x^4 + 3*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 4*x^9 + ...
G.f. = q^5 + q^13 + 2*q^21 + 3*q^29 + q^37 + 3*q^45 + 3*q^53 + 3*q^61 + 4*q^69 + ... ,
apparently the theta series of the sodalite net, aka edge-skeleton of space honeycomb by truncated octahedra. - Fred Lunnon, Mar 05 2015
MATHEMATICA
QP = QPochhammer; s = QP[q^4]^4/QP[q] + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Jul 26 2011, updated Nov 29 2015 *)
PROG
(PARI)
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^4 / eta(x + A), n))}; /* Michael Somos, Mar 24 2003 */
CROSSREFS
A004024/4, column t=4 of A175595.
Cf. A286953.
KEYWORD
nonn
EXTENSIONS
More terms from James A. Sellers, Feb 11 2000
STATUS
approved
Expansion of phi(q) * phi(-q)^2 in powers of q where phi() is a Ramanujan theta function.
+10
7
1, -2, -4, 8, 6, -8, -8, 0, 12, -10, -8, 24, 8, -8, -16, 0, 6, -16, -12, 24, 24, -16, -8, 0, 24, -10, -24, 32, 0, -24, -16, 0, 12, -16, -16, 48, 30, -8, -24, 0, 24, -32, -16, 24, 24, -24, -16, 0, 8, -18, -28, 48, 24, -24, -32, 0, 48, -16, -8, 72, 0, -24, -32
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-x) * phi(-x^2)^2 = phi(-x^2)^4 / phi(x) in powers of x where phi() is a Ramanujan theta function.
Expansion of eta(q^2)^3 * eta(q)^2 / eta(q^4)^2 in powers of q.
Euler transform of period 4 sequence [-2, -5, -2, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 32 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A045828.
G.f.: Product_{k>0} (1 - x^(2*k))^3 * (1 - x^k)^2 / (1 - x^(4*k))^2.
a(4*n) = A005875(n). a(4*n + 1) = -2 * A045834(n). a(4*n + 2) = - A005877(n) = -4 * A045828(n).
a(8*n) = A004015(n). a(8*n + 3) = A005878(n) = 8 * A008443(n). a(8*n + 4)= A005887(n). a(8*n + 5) = -2 * A004024(n). a(8*n + 6) = -8 * A213624(n). a(8*n + 7) = 0.
EXAMPLE
G.f. = 1 - 2*q - 4*q^2 + 8*q^3 + 6*q^4 - 8*q^5 - 8*q^6 + 12*q^8 - 10*q^9 + ...
MATHEMATICA
a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]* EllipticTheta[3, 0, -q]^2, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Nov 30 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x + A)^2 / eta(x^4 + A)^2, n))};
KEYWORD
sign
AUTHOR
Michael Somos, May 29 2012
STATUS
approved
Expansion of phi(-q) * phi(q)^2 in powers of q where phi() is a Ramanujan theta function.
+10
0
1, 2, -4, -8, 6, 8, -8, 0, 12, 10, -8, -24, 8, 8, -16, 0, 6, 16, -12, -24, 24, 16, -8, 0, 24, 10, -24, -32, 0, 24, -16, 0, 12, 16, -16, -48, 30, 8, -24, 0, 24, 32, -16, -24, 24, 24, -16, 0, 8, 18, -28, -48, 24, 24, -32, 0, 48, 16, -8, -72, 0, 24, -32, 0, 6, 32
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
FORMULA
Expansion of eta(q^2)^9 / (eta(q)^2 * eta(q^4)^4) in powers of q.
Expansion of phi(q) * phi(-q^2)^2 = phi(-q^2)^4 / phi(-q) in powers of q.
Euler transform of period 4 sequence [2, -7, 2, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(11/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A045834.
G.f. Product_{k>0} (1 - x^k)^3 * (1 + x^k)^5 / (1 + x^(2*k))^4.
a(n) = (-1)^n * A212885(n) = A083703(2*n) = A080965(2*n).
a(4*n) = a(n) * -A132429(n + 2) where A132429 is a period 4 sequence.
a(4*n) = A005875(n). a(4*n + 1) = 2 * A045834(n). a(4*n + 2) = -4 * A045828(n).
a(8*n) = A004015(n). a(8*n + 1) = 2 * A213022(n). a(8*n + 2) = -4 * A213625(n). a(8*n + 3) = -8 * A008443(n). a(8*n + 4) = A005887(n). a(8*n + 5) = 2 * A004024(n). a(8*n + 6) = -8 * A213624(n). a(8*n + 7) = 0.
EXAMPLE
G.f. = 1 + 2*x - 4*x^2 - 8*x^3 + 6*x^4 + 8*x^5 - 8*x^6 + 12*x^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q]^2, {q, 0, n}];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^2]^2, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^9 / (eta(x + A)^2 * eta(x^4 + A)^4), n))};
(Magma) A := Basis( ModularForms( Gamma0(16), 3/2), 66); A[1] + 2*A[2] - 4*A[3] - 8*A[4];
KEYWORD
sign
AUTHOR
Michael Somos, Sep 09 2018
STATUS
approved

Search completed in 0.007 seconds