[go: up one dir, main page]

login
Search: a003752 -id:a003752
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of Hamiltonian paths in C_n X P_n.
+10
5
1, 4, 144, 4016, 152230, 14557092, 1966154260, 761411682704, 411068703517542, 684434716944151900, 1572754514153890134760, 11579615738168536799184984, 117186519917858266359631481672, 3877921919790491112398750141807648, 176258463464553583688099296874564393850, 26493868301658838913487471166447301509560736
OFFSET
1,2
COMMENTS
This is the number of undirected paths.
LINKS
Artem M. Karavaev, Hamilton Paths
Eric Weisstein's World of Mathematics, Hamiltonian Path
Eric Weisstein's World of Mathematics, Stacked Prism Graph
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Feb 15 2016
STATUS
approved
Number of (undirected) paths in C_4 X P_n.
+10
5
12, 444, 7584, 103184, 1246892, 14010212, 150042016, 1554630384, 15735477148, 156604841764, 1539509238384, 14997746124304, 145132198165132, 1397493793301476, 13407313676392384, 128278229316758192, 1224872135665718780, 11678406201771406628, 111224649402691424912, 1058446545979095492816
OFFSET
1,1
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_CnXPk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A(start, goal, n, k):
universe = make_CnXPk(n, k)
GraphSet.set_universe(universe)
paths = GraphSet.paths(start, goal)
return paths.len()
def B(n, k):
m = k * n
s = 0
for i in range(1, m):
for j in range(i + 1, m + 1):
s += A(i, j, n, k)
return s
def A338960(n):
return B(4, n)
print([A338960(n) for n in range(1, 11)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 18 2020
STATUS
approved
Number of Hamiltonian paths in K_3 X P_n.
+10
3
3, 30, 144, 588, 2160, 7440, 24576, 78912, 248448, 771456, 2371968, 7241856, 21998976, 66586752, 201025920, 605781120, 1823094144, 5481472128, 16470172032, 49464779904, 148508372352, 445764192384, 1337792747904
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
FORMULA
a(n) = 7*a(n-1) - 16*a(n-2) + 12*a(n-3), n>5.
a(n) = 128 * 3^(n-2) - (21*n + 57) * 2^(n-2), n>2. - Ralf Stephan, Sep 26 2004
G.f.: 3*x*(1+3*x-6*x^2+8*x^3-4*x^4) / ((1-3*x)*(1-2*x)^2). [R. J. Mathar, Dec 16 2008]
MATHEMATICA
Join[{3, 30}, LinearRecurrence[{7, -16, 12}, {144, 588, 2160}, 30]] (* Harvey P. Dale, Apr 26 2014 *)
CoefficientList[Series[3 (1 + 3 x - 6 x^2 + 8 x^3 - 4 x^4)/((1 - 3 x) (1 - 2 x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 27 2014 *)
PROG
(Magma) [3, 30] cat [128*3^(n-2)-(21*n+57)*2^(n-2): n in [3..30]]; // Vincenzo Librandi, Apr 27 2014
(Python)
# Using graphillion
from graphillion import GraphSet
def make_CnXPk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A(start, goal, n, k):
universe = make_CnXPk(n, k)
GraphSet.set_universe(universe)
paths = GraphSet.paths(start, goal, is_hamilton=True)
return paths.len()
def B(n, k):
m = k * n
s = 0
for i in range(1, m):
for j in range(i + 1, m + 1):
s += A(i, j, n, k)
return s
def A003689(n):
return B(3, n)
print([A003689(n) for n in range(1, 21)]) # Seiichi Manyama, Dec 18 2020
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
a(n) = A173675(A025487(n)).
+10
2
1, 1, 1, 4, 1, 8, 1, 14, 72, 1, 20, 22, 584, 1, 62, 32, 4016, 1, 132, 16880, 44, 45696, 276, 24656, 1, 336, 413484, 58, 11323440, 1006, 140624, 1, 688, 9044404, 74, 2384871120, 3610, 2480304, 761960, 1, 35281856, 1578, 68984506112, 4324, 183901520, 92, 446907448224, 12010, 677849536, 3976704, 1, 2683205048, 3190, 93749829120
OFFSET
1,4
COMMENTS
Terms in A173675 are only determined by their prime signature. A025487 gives the least positive integer having its prime signature. Combining these sequences removes a lot of duplicates making it somewhat easier to show terms.
a(54) = A284673(5) = 93749829120. - Andrew Howroyd, Oct 26 2019
Many terms from Kloczkowski & Jernigan's Table IV (which has A003752 as a column) show up in the Data section of this sequence. For the (partial) explanation of that, see Andrew Howroyd's comment in A173675. - Andrey Zabolotskiy, Aug 07 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
David A. Corneth, Dec 25 2017
EXTENSIONS
Terms a(29) and beyond from Andrew Howroyd, Oct 26 2019
STATUS
approved
Number of Hamiltonian paths in C_6 X P_n.
+10
1
6, 228, 4800, 76116, 1094316, 14557092, 183735204, 2230289220, 26275912776, 302338568832, 3412921463352, 37923555328200, 415863933818988, 4509400849281240, 48428461587426108, 515767225814395500, 5452991323044249720, 57282647077608267072, 598324561437126968664, 6217929367753246782612
OFFSET
1,1
LINKS
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_CnXPk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A(start, goal, n, k):
universe = make_CnXPk(n, k)
GraphSet.set_universe(universe)
paths = GraphSet.paths(start, goal, is_hamilton=True)
return paths.len()
def B(n, k):
m = k * n
s = 0
for i in range(1, m):
for j in range(i + 1, m + 1):
s += A(i, j, n, k)
return s
def A338297(n):
return B(6, n)
print([A338297(n) for n in range(1, 11)])
CROSSREFS
Cf. A003689 (C_3 X P_n), A003752 (C_4 X P_n), A003732 (C_5 X P_n), A268894 (C_n X P_n).
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 18 2020
STATUS
approved

Search completed in 0.055 seconds