[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a002896 -id:a002896
Displaying 1-10 of 31 results found. page 1 2 3 4
     Sort: relevance | references | number | modified | created      Format: long | short | data
A174516 Partial sums of A002896. +20
1
1, 7, 97, 1957, 46687, 1219243, 33715399, 970085119, 28740443449, 870830918389, 26860099935529, 840549807424369, 26620996978712269, 851664885506669269, 27482469263443730269, 893460843597349019629, 29235859228655427097639 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{i=0..n} A002896(i).
G.f.: g/(1-x) where g is the o.g.f. of A002896. - Mark van Hoeij, Nov 12 2011
a(n) ~ 2^(2*n) * 3^(2*n + 7/2) / (35 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Feb 17 2024
EXAMPLE
a(4) = 1 + 6 + 90 + 1860 + 44730 = 46687.
MATHEMATICA
b[n_] := b[n] = (* A002896 *) Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n}, {1, 1}, 4]; a[n_] := Sum[b[k], {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Dec 20 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Mar 20 2010
STATUS
approved
A086231 Decimal expansion of value of Watson's integral. +10
14
1, 5, 1, 6, 3, 8, 6, 0, 5, 9, 1, 5, 1, 9, 7, 8, 0, 1, 8, 1, 5, 6, 0, 1, 2, 1, 5, 9, 6, 8, 1, 4, 2, 0, 7, 7, 9, 9, 5, 5, 3, 8, 7, 0, 4, 4, 4, 5, 2, 2, 6, 2, 6, 7, 6, 5, 6, 6, 9, 8, 0, 4, 6, 3, 6, 5, 8, 0, 8, 6, 3, 2, 0, 3, 5, 3, 5, 2, 1, 4, 5, 0, 4, 0, 1, 6, 1, 1, 7, 4, 1, 2, 0, 9, 6, 8, 8, 1, 1, 3, 9, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
M. Lawrence Glasser and I. John Zucker, Extended Watson integrals for the cubic lattices, Proceedings of the National Academy of Sciences, Vol. 74, No. 5 (1977), pp. 1800-1801, alternative link.
Anthony J. Guttmann, Lattice Green's functions in all dimensions, J. Phys. A.: Math. Theor., Vol. 43, No. 30 (2010) 305205.
George N. Watson, Three triple integrals, The Quarterly Journal of Mathematics, Vol. os-10, No. 1 (1939), pp. 266-276.
Eric Weisstein's World of Mathematics, Pólya's Random Walk Constants.
FORMULA
Equals (sqrt(3)-1)*(gamma(1/24)*gamma(11/24))^2/(32*Pi^3). - G. C. Greubel, Jan 07 2018
Equals 1/(1 - A086230). - Amiram Eldar, Aug 28 2020
Equals Sum_{k>=0} A002896(k)/36^k. - Vaclav Kotesovec, Apr 23 2023
EXAMPLE
1.51638605915197801815601215968142077995538704445226267656698...
MAPLE
evalf((sqrt(3)-1)*(GAMMA(1/24)*GAMMA(11/24))^2 / (32*Pi^3), 120); # Vaclav Kotesovec, Sep 16 2014
MATHEMATICA
RealDigits[ N[ Sqrt[6]/32/Pi^3*Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24], 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *)
PROG
(PARI) (sqrt(3)-1)*(gamma(1/24)*gamma(11/24))^2 / (32*Pi^3) \\ Altug Alkan, Apr 13 2016
(Magma) C<i> := ComplexField(); (Sqrt(3)-1)*(Gamma(1/24)*Gamma(11/24))^2/(32*Pi(C)^3) // G. C. Greubel, Jan 07 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 12 2003
STATUS
approved
A084261 A binomial transform of factorial numbers. +10
12
1, 1, 2, 4, 9, 21, 52, 134, 361, 1009, 2926, 8768, 27121, 86373, 282864, 950866, 3277169, 11564353, 41739130, 153919324, 579411641, 2224535125, 8703993420, 34681783422, 140637608089, 580019801201, 2431509498406, 10355296410712 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Binomial transform of A000142 (with interpolated zeros).
Row sums of A161556. Hankel transform is A137704. [Paul Barry, Apr 11 2010]
LINKS
Jonathan Fang, Zachary Hamaker, and Justin Troyka, On pattern avoidance in matchings and involutions, arXiv:2009.00079 [math.CO], 2020. See Proposition 4.13 p. 15.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*k!.
a(n) = Sum_{k=0..n} C(n, k)*(k/2)!*((1+(-1)^k)/2) .
E.g.f.: exp(x)*(1+sqrt(Pi)/2*x*exp(x^2/4)*erf(x/2)). - Vladeta Jovovic, Sep 25 2003
O.g.f.: A(x) = 1/(1-x-x^2/(1-x-x^2/(1-x-2*x^2/(1-x-2*x^2/(1-x-3*x^2/(1-... -x-[(n+1)/2]*x^2/(1- ...))))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
a_n ~ (1/2) * sqrt(Pi*n/e)*(n/2)^(n/2)*exp(-n/2 + sqrt(2n)). - Cecil C Rousseau (ccrousse(AT)memphis.edu), Mar 14 2006: (cf. A002896).
Conjecture: 2*a(n) -4*a(n-1) +(-n+2)*a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Nov 30 2012
MATHEMATICA
Table[Sum[Binomial[n, 2*k]*k!, {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Jan 24 2017 *)
PROG
(PARI) for(n=0, 50, print1(sum(k=0, floor(n/2), binomial(n, 2*k)*k!), ", ")) \\ G. C. Greubel, Jan 24 2017
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 26 2003
STATUS
approved
A039699 Number of 4-dimensional cubic lattice walks that start and end at the origin after 2n steps, free to pass through origin at intermediate stages. +10
11
1, 8, 168, 5120, 190120, 7939008, 357713664, 16993726464, 839358285480, 42714450658880, 2225741588095168, 118227198981126144, 6380762273973278464, 349019710593278412800, 19310744204362333900800, 1079054103459778710405120, 60818479243449308702049960 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Generating function G(x) is D-finite with a singular point at x = 1/64 (cf. Graph Link). After summing 300000 terms, G(1/64) = 1.239466... and 1 - 1/G(1/64) = 0.193201... Convergence to A086232 is very slow. - Bradley Klee, Aug 20 2018
a(n) is also the constant term in the expansion of (w + 1/w + x + 1/x + y + 1/y + z + 1/z)^(2n). This follows directly from the sequence name, each variable corresponding to a single step in one of the four axis directions. - Christopher J. Smyth, Sep 28 2018
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 322-331.
LINKS
Steven R. Finch, Symmetric Random Walk on n-Dimensional Integer Lattice. [Cached copy, with permission of the author]
Bradley Klee, Graph of g.f.
Gilbert Labelle and Annie Lacasse, Closed paths whose steps are roots of unity, in FPSAC 2011, Reykjavik, Iceland DMTCS proc. AO, 2011, 599-610.
J. Novak, Pólya's random walk theorem, arXiv:1301.3916 [math.PR], 2013.
FORMULA
E.g.f.: Sum_{n>=0} a(2*n) * x^(2*n)/(2*n)! = I_0(2*x)^4. (I = Modified Bessel function of the first kind).
a(n) = binomial(2*n,n)*A002895(n). - Mark van Hoeij, Apr 19 2013
a(n) = binomial(2*n,n)^2*hypergeom([1/2,-n,-n,-n],[1,1,1/2-n],1). - Peter Luschny, May 23 2017
a(n) ~ 2^(6*n+1) / (Pi*n)^2. - Vaclav Kotesovec, Nov 13 2017
From Bradley Klee, Aug 20 2018: (Start)
G.f.: Define G(x) = Sum_{n>=0} a(n)*x^n and G^(j) = (d/dx)^j G(x), then Sum_{j=0..4,k=0..5} M_{j,k}*G^(j)*x^k = 0, with
M={{-8, 768, 0, 0, 0, 0}, {1, -424, 14592, 0, 0, 0}, {0, 7, -1172, 25344, 0, 0}, {0, 0, 6, -640, 10240, 0}, {0, 0, 0, 1, -80, 1024}}.
Sum_{j=0..2,k=0..4} M_{j,k}*a(n-j)*n^k = 0, with
M={{0, 0, 0, 0, 1}, {-8, 52, -132, 160, -80}, {768, -3584, 5888, -4096, 1024}}.
(End)
a(n) = Sum_{i+j+k+l=n, 0<=i,j,k,l<=n} multinomial(2n [i,i,j,j,k,k,l,l]). - Shel Kaphan, Jan 16 2023
EXAMPLE
a(5)=7939008, i.e., there are 7939008 different walks that start and end at origin of a 4-dimensional integer lattice after 2*5=10 steps, free to pass through origin at intermediate steps.
MAPLE
A039699 := n -> binomial(2*n, n)^2*hypergeom([1/2, -n, -n, -n], [1, 1, 1/2 - n], 1):
seq(simplify(A039699(n)), n=0..14); # Peter Luschny, May 23 2017
MATHEMATICA
max = 30 (* must be even *); Partition[ CoefficientList[ Series[ BesselI[0, 2 x]^4, {x, 0, max}], x]*Range[0, max]!, 2][[All, 1]] (* Jean-François Alcover, Oct 05 2011 *)
With[{nn=30}, Take[CoefficientList[Series[BesselI[0, 2x]^4, {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Aug 09 2013 *)
RecurrenceTable[{256*(n-1)^2*(2*n-3)*(2*n-1)*a[n-2] - 4*(2*n-1)^2*(5*n^2-5*n+2)*a[n-1] + n^4*a[n]==0, a[0]==1, a[1]==8}, a, {n, 0, 100}] (* Bradley Klee, Aug 20 2018 *)
PROG
(PARI)
C=binomial;
A002895(n) = sum(k=0, n, C(n, k)^2 * C(2*n-2*k, n-k) * C(2*k, k) );
a(n)= C(2*n, n) * A002895(n);
/* Joerg Arndt, Apr 19 2013 */
CROSSREFS
1-dimensional, 2-dimensional, 3-dimensional analogs are A000984, A002894, A002896. Pólya Constant: A086232.
Row k=4 of A287318.
KEYWORD
nonn,nice,easy,walk
AUTHOR
Alessandro Zinani (alzinani(AT)tin.it)
STATUS
approved
A049037 Number of cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages. +10
9
1, 6, 54, 996, 22734, 577692, 15680628, 445162392, 13055851998, 392475442092, 12029082873372, 374482032292008, 11808861461931492, 376406128925067528, 12108063535794336312, 392560994063887113744, 12814685828476778001726, 420836267423433182275404 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 322-331.
LINKS
Steven R. Finch, Symmetric Random Walk on n-Dimensional Integer Lattice [Cached copy, with permission of the author]
N. J. A. Sloane, Transforms
FORMULA
Define a_0, a_1, ... = [ 1, 6, 54, ... ] by 1+Sum b_i x^i = 1/(1-Sum a_i x^i) where b_0, b_1, ... = [ 1, 6, 90, ... ] = A002896.
Or, Sum[ a(n) x^(2n), n=1, 2, ...infinity ] = 1-1/Sum[ A002896(n)*x^(2n), n=0, 1, ...infinity ].
G.f.: 2-sqrt(1+12*z) /hypergeom([1/8, 3/8], [1], 64/81*z *(1+sqrt(1-36*z))^2 *(2+sqrt(1-36*z))^4 /(1+12*z)^4)/ hypergeom([1/8, 3/8], [1], 64/81*z *(1-sqrt(1-36*z))^2 *(2-sqrt(1-36*z))^4 /(1+12*z)^4). - Sergey Perepechko, Jan 30 2011
a(n) ~ c * 36^n / n^(3/2), where c = 0.1014559485279103938501072426734... . - Vaclav Kotesovec, Sep 13 2014
c = 384 * (3 + 2*sqrt(3)) * Pi^(9/2) / (Gamma(1/24)^4 * Gamma(11/24)^4). - Vaclav Kotesovec, Apr 23 2023
EXAMPLE
a(5) = 577692 because there are 577692 different walks that start and end at the origin after 2*5=10 steps, avoiding origin at intermediate steps.
MAPLE
read transforms; t1 := [ seq(A002896(i), i=1..25) ]; INVERTi(t1);
# second Maple program:
b:= proc(n) option remember; `if`(n<2, 5*n+1,
(2*(2*n-1)*(10*n^2-10*n+3) *b(n-1)
-36*(n-1)*(2*n-1)*(2*n-3) *b(n-2)) /n^3)
end:
g:= proc(n) g(n):= `if` (n<1, -1, -add(g(n-i) *b(i), i=1..n)) end:
a:= n-> abs(g(n)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 02 2012
MATHEMATICA
(* A002896 : *) b[n_] := b[n] = Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n}, {1, 1}, 4]; max = 32; a[0] = 1; se = Series[ Sum[ a[n] x^(2 n), {n, 1, max}] - 1 + 1/Sum[ b[n]*x^(2 n), {n, 0, max}], {x, 0, max}]; coes = CoefficientList[se, x]; sol = First[ Solve[ Thread[ coes == 0]]]; Table[ a[n], {n, 0, 16}] /. sol (* Jean-François Alcover, Dec 20 2011 *)
b[n_] := b[n] = If[n < 2, 5*n + 1, (2*(2*n - 1)*(10*n^2 - 10*n + 3)*b[n-1] - 36*(n - 1)*(2*n - 1)*(2*n - 3)*b[n-2]) / n^3];
g[n_] := g[n] = If[n < 1, -1, -Sum [g[n - i]*b[i], {i, 1, n}]];
a[n_] := Abs[g[n]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 12 2018, after Alois P. Heinz *)
CROSSREFS
Invert A002896, A094059.
Column k=3 of A361397.
KEYWORD
easy,nonn,nice
AUTHOR
Alessandro Zinani (alzinani(AT)tin.it)
STATUS
approved
A287318 Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals. +10
8
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 36, 20, 0, 1, 8, 90, 400, 70, 0, 1, 10, 168, 1860, 4900, 252, 0, 1, 12, 270, 5120, 44730, 63504, 924, 0, 1, 14, 396, 10900, 190120, 1172556, 853776, 3432, 0, 1, 16, 546, 19920, 551950, 7939008, 32496156, 11778624, 12870, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
FORMULA
A(n,k) = A287316(n,k) * binomial(2*n,n).
EXAMPLE
Arrays start:
k\n| 0 1 2 3 4 5 6
---|---------------------------------------------------------
k=0| 1, 0, 0, 0, 0, 0, 0, ... A000007
k=1| 1, 2, 6, 20, 70, 252, 924, ... A000984
k=2| 1, 4, 36, 400, 4900, 63504, 853776, ... A002894
k=3| 1, 6, 90, 1860, 44730, 1172556, 32496156, ... A002896
k=4| 1, 8, 168, 5120, 190120, 7939008, 357713664, ... A039699
k=5| 1, 10, 270, 10900, 551950, 32232060, 2070891900, ... A287317
k=6| 1, 12, 396, 19920, 1281420, 96807312, 8175770064, ... A356258
k=7| 1, 14, 546, 32900, 2570050, 238935564, 25142196156, ...
k=8| 1, 16, 720, 50560, 4649680, 514031616, 64941883776, ...
k=9| 1, 18, 918, 73620, 7792470, 999283068, 147563170524, ...
MAPLE
A287318_row := proc(k, len) local b, ser;
b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
seq((2*i)!*coeff(ser, x, i), i=0..len-1) end:
for k from 0 to 6 do A287318_row(k, 9) od;
MATHEMATICA
Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (2 n)!, {n, 0, 6}], {k, 0, 6}]
CROSSREFS
Rows: A000007 (k=0), A000984 (k=1), A002894 (k=2), A002896 (k=3), A039699 (k=4), A287317 (k=5), A356258 (k=6).
Columns: A005843 (n=1), A152746 (n=2), 20*A169711 (n=3), 70*A169712 (n=4), 252*A169713 (n=5).
Main diagonal gives A303503.
Cf. A287316.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 23 2017
STATUS
approved
A288458 Chebyshev coefficients of density of states of cubic lattice. +10
8
1, -24, 288, -2688, -32256, 2820096, -95035392, 1972076544, -9841803264, -1288894414848, 70351960670208, -2164060518875136, 36664809432809472, 365875642245316608, -55960058736918134784, 2436570173137823465472, -64272155689216515244032, 664295705652718630600704, 35692460661517822602510336 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
This is the sequence of integers z^n g_n for n=0,2,4,6,... where g_n are the coefficients in the Chebyshev polynomial expansion of the density of states of the simple cubic lattice (z=6), g(w) = 1 / (Pi*sqrt(1-w^2)) * Sum_{n>=0} (2-delta_n) g_n T_n(w). Here |w| <= 1 and delta is the Kronecker delta.
The Chebyshev coefficients, g_n, are related to the number of walks on the lattice that return to the origin, W_n, as g_n = Sum_{k=0..n} a_{nk} z^{-k} W_k, where z is the coordination number of the lattice and a_{nk} are the coefficients of Chebyshev polynomials such that T_n(x) = Sum_{k=0..n} a_{nk} x^k.
The author was unable to obtain a closed form for z^n g_n.
LINKS
MATHEMATICA
Whon[n_] := If[OddQ[n], 0,
Sum[Binomial[n/2, j]^2 Binomial[2j, j], {j, 0, n/2}]];
Wcub[n_] := Binomial[n, n/2] Whon[n];
ank[n_, k_] := SeriesCoefficient[ChebyshevT[n, x], {x, 0, k}];
zng[n_] := Sum[ank[n, k]*6^(n-k)*Wcub[k], {k, 0, n}];
Table[zng[n], {n, 0, 50}]
CROSSREFS
Related to numbers of walks returning to origin, W_n, on cubic lattice (A002896).
KEYWORD
sign
AUTHOR
Yen-Lee Loh, Jun 16 2017
STATUS
approved
A001413 Number of 2n-step polygons on cubic lattice.
(Formerly M5154 N2238)
+10
7
0, 24, 264, 3312, 48240, 762096, 12673920, 218904768, 3891176352, 70742410800, 1309643747808, 24609869536800, 468270744898944, 9005391024862848, 174776445357365040, 3419171337633496704 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n) is the number of 2n-step closed self-avoiding paths on the cubic lattice. - Bert Dobbelaere, Jan 04 2019
REFERENCES
B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.
M. F. Sykes, D. S. McKenzie, M. G. Watts, and J. L. Martin, The number of self-avoiding walks on a lattice, J. Phys. A 5 (1972), 661-666.
FORMULA
a(n) = 4*n*A001409(n). - Sean A. Irvine, Jul 27 2020
CROSSREFS
Cf. A001409.
Cf. A010566 (for square lattice equivalent).
Cf. A002896 (without self-avoidance restriction).
KEYWORD
nonn,walk,more
AUTHOR
EXTENSIONS
a(11)-a(12) from Bert Dobbelaere, Jan 04 2019
a(13)-a(16) (using A001409) from Alois P. Heinz, Feb 28 2024
STATUS
approved
A287317 Number of 5-dimensional cubic lattice walks that start and end at origin after 2n steps, free to pass through origin at intermediate stages. +10
6
1, 10, 270, 10900, 551950, 32232060, 2070891900, 142317232200, 10277494548750, 770878551371500, 59577647564312020, 4717432065143561400, 381091087190569291900, 31308955091335405435000, 2609450031306515140215000, 220199552765301571338488400 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^5.
a(n) = binomial(2*n,n)*A169714(n).
a(n) ~ 2^(2*n) * 5^(2*n + 5/2) / (16 * Pi^(5/2) * n^(5/2)). - Vaclav Kotesovec, Nov 13 2017
a(n) = Sum_{i+j+k+l+m=n, 0<=i,j,k,l,m<=n} multinomial(2n, [i,i,j,j,k,k,l,l,m,m]). - Shel Kaphan, Jan 24 2023
MAPLE
A287317_list := proc(len) series(BesselI(0, 2*sqrt(x))^5, x, len);
seq((2*i)!*coeff(%, x, i), i=0..len-1) end: A287317_list(16);
MATHEMATICA
Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^5, {x, 0, n}] (2 n) !, {n, 0, 15}]
Table[Binomial[2n, n]^2 Sum[(Binomial[n, j]^4/Binomial[2n, 2j]) HypergeometricPFQ[{-j, -j, -j}, {1, 1/2-j}, 1/4], {j, 0, n}], {n, 0, 15}]
Table[Sum[(2 n)!/(i! j! k! l! (n-i-j-k-l)!)^2, {i, 0, n}, {j, 0, n-i}, {k, 0, n-i-j}, {l, 0, n-i-j-k}], {n, 0, 30}] (* Shel Kaphan, Jan 24 2023 *)
CROSSREFS
Case k=5 of A287318.
1-4 dimensional analogs are A000984, A002894, A002896, A039699.
KEYWORD
nonn,easy,walk
AUTHOR
Peter Luschny, May 23 2017
EXTENSIONS
Moved original definition to formula section and reworded definition descriptively similar to sequence A039699, by Dave R.M. Langers, Oct 12 2022
STATUS
approved
A303503 a(n) = (2*n)! * [x^(2*n)] BesselI(0,2*x)^n. +10
3
1, 2, 36, 1860, 190120, 32232060, 8175770064, 2898980908824, 1369263687414480, 830988068906518380, 630109741730668410640, 583773362067938664133512, 648851848280206013365243776, 852146184628067383511375555000, 1305460597778526044143501996708800, 2307324514460203126471248458864413200 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = A287318(n,n).
a(n) ~ c * d^n * n^(2*n), where c = 1.72802011936236389522137050964080... and d = 1.1381284656425793765251319541847869000364101065484286935... - Vaclav Kotesovec, Apr 26 2018
a(n) = A000984(n)*A033935(n). - Alois P. Heinz, Jan 30 2023
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
end:
a:= n-> (2*n)!*b(n$2)/n!^2:
seq(a(n), n=0..17); # Alois P. Heinz, Jan 29 2023
MATHEMATICA
Table[(2 n)! SeriesCoefficient[BesselI[0, 2 x]^n, {x, 0, 2 n}], {n, 0, 15}]
CROSSREFS
Main diagonal of A287318.
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 25 2018
STATUS
approved
page 1 2 3 4

Search completed in 0.020 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 21:13 EDT 2024. Contains 375518 sequences. (Running on oeis4.)