[go: up one dir, main page]

login
Search: a002128 -id:a002128
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k), n >= 1, k >= 1, of generalized sum of divisors function, read by rows.
+10
9
1, 3, 1, 4, 3, 7, 9, 6, 1, 15, 12, 3, 30, 8, 9, 45, 15, 22, 67, 13, 1, 42, 99, 18, 3, 81, 135, 12, 9, 140, 175, 28, 22, 231, 231, 14, 51, 351, 306, 24, 1, 97, 551, 354, 24, 3, 188, 783, 465, 31, 9, 330, 1134, 540, 18, 22, 568, 1546, 681, 39, 51, 918, 2142, 765, 20
OFFSET
1,2
COMMENTS
Lengths of rows are 1 1 2 2 2 3 3 3 3 ... (A003056).
LINKS
G. E. Andrews and S. C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769 [math.NT], 2010.
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113; Coll. Papers II, pp. 303-341.
FORMULA
T(n, 1) = sum of divisors of n (A000203), T(n, k) = sum of s_1*s_2*...*s_k where s_1, s_2, ..., s_k are such that s_1*m_1 + s_2*m_2 + ... + s_k*m_k = n and the sum is over all such k-partitions of n.
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1-q^m_1)*(1-q^m_2)*...*(1-q^m_k))^2 = Sum_n T(n, k)*q^n.
G.f. for k-th diagonal: (-1)^k * (1/(2*k+1)) * ( Sum_{j>=k} (-1)^j * (2*j+1) * binomial(j+k,2*k) * q^(j*(j+1)/2) ) / ( Sum_{j>=0} (-1)^j * (2*j+1) * q^(j*(j+1)/2) ). - Seiichi Manyama, Sep 15 2023
EXAMPLE
Triangle turned on its side begins:
1 3 4 7 6 12 8 15 13 18 ...
1 3 9 15 30 45 67 99 ...
1 3 9 22 42 ...
1 ...
For example, T(6,2) = 15.
MATHEMATICA
Clear[diag, m]; nmax = 19; kmax = Floor[(Sqrt[8*nmax+1]-1)/2]; m[0] = 0; diag[k_] := diag[k] = Sum[q^(Sum[m[i], {i, 1, k}])/(Times @@ (1 - q^Array[m, k]))^2, Sequence @@ Table[{m[j], m[j-1]+1, nmax}, {j, 1, k}] // Evaluate] + O[q]^(nmax+1) // CoefficientList[#, q]&; Table[ Select[ Table[diag[k][[j+1]], {k, 1, kmax}], IntegerQ[#] && # > 0&] // Reverse, {j, 1, nmax}] // Flatten (* Jean-François Alcover, Jul 18 2017 *)
CROSSREFS
KEYWORD
nonn,tabf,easy,nice
AUTHOR
N. J. A. Sloane, Mar 19 2001
EXTENSIONS
More terms from Naohiro Nomoto, Jan 24 2002
STATUS
approved
Expansion of Sum_{0<i<j<k<l} q^(i+j+k+l)/( (1-q^i)*(1-q^j)*(1-q^k)*(1-q^l) )^2.
+10
4
1, 3, 9, 22, 51, 97, 188, 330, 568, 918, 1452, 2233, 3344, 4884, 7004, 9856, 13653, 18699, 25080, 33462, 43918, 57304, 73668, 94482, 119262, 150285, 187231, 232560, 285660, 350746, 425627, 516477, 620731, 745503, 887796, 1056669, 1247521, 1472460, 1726054, 2021327
OFFSET
10,2
LINKS
G. E. Andrews and S. C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769 [math.NT], 2010.
FORMULA
G.f.: (1/9) * ( Sum_{k>=4} (-1)^k * (2*k+1) * binomial(k+4,8) * q^(k*(k+1)/2) ) / ( Sum_{k>=0} (-1)^k * (2*k+1) * q^(k*(k+1)/2) ).
a(n) = (5*sigma_7(n) - (126*n-441)*sigma_5(n) + (756*n^2-4410*n+4935)*sigma_3(n) - (840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680. - Seiichi Manyama, Jul 24 2024
PROG
(PARI) a(n) = (5*sigma(n, 7)-(126*n-441)*sigma(n, 5)+(756*n^2-4410*n+4935)*sigma(n, 3)-(840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680; \\ Seiichi Manyama, Jul 24 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 15 2023
STATUS
approved
Expansion of Sum_{1<=i<=j<=k} q^(i+j+k)/( (1-q^i)*(1-q^j)*(1-q^k) )^2.
+10
3
1, 7, 27, 77, 181, 378, 707, 1254, 2052, 3290, 4928, 7371, 10381, 14756, 19818, 27158, 35139, 46683, 58806, 76146, 93555, 119092, 143222, 178983, 212408, 261261, 305046, 371931, 428156, 515592, 589385, 701442, 792720, 939918, 1050567, 1233387, 1374835, 1600143, 1766583, 2052898, 2247784
OFFSET
3,2
LINKS
Tewodros Amdeberhan, George E. Andrews and Roberto Tauraso, Extensions of MacMahon's sums of divisors, arXiv:2309.03191v1 [math.CO], Sep 06 2023.
FORMULA
a(n) = (31*sigma_5(n) - 70*(n+1)*sigma_3(n) + (40*n^2+60*n+9)*sigma(n))/1920.
MATHEMATICA
A374930[n_] := (31*DivisorSigma[5, n] - 70*(n + 1)*DivisorSigma[3, n] + (40*n^2 + 60*n + 9)*DivisorSigma[1, n])/1920;
Array[A374930, 50, 3] (* Paolo Xausa, Jul 24 2024 *)
PROG
(PARI) a(n) = (31*sigma(n, 5)-70*(n+1)*sigma(n, 3)+(40*n^2+60*n+9)*sigma(n))/1920;
(Python)
from math import prod
from sympy import factorint
def A374930(n):
f = factorint(n).items()
return (31*prod((p**(5*(e+1))-1)//(p**5-1) for p, e in f)-70*(n+1)*prod((p**(3*(e+1))-1)//(p**3-1) for p, e in f) + (20*n*((n<<1)+3)+9)*prod((p**(e+1)-1)//(p-1) for p, e in f))//1920 # Chai Wah Wu, Jul 24 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 24 2024
STATUS
approved
Expansion of Sum_{0<i<j<k<l<m} q^(i+j+k+l+m)/( (1-q^i)*(1-q^j)*(1-q^k)*(1-q^l)*(1-q^m) )^2.
+10
2
1, 3, 9, 22, 51, 108, 208, 390, 693, 1193, 1977, 3195, 4995, 7722, 11583, 17164, 24882, 35685, 50205, 70083, 96300, 131101, 176358, 235377, 310651, 407352, 529074, 682750, 874038, 1112085, 1405521, 1766259, 2206413, 2741431, 3389052, 4168089, 5103450, 6218469
OFFSET
15,2
LINKS
FORMULA
G.f.: -(1/11) * ( Sum_{k>=5} (-1)^k * (2*k+1) * binomial(k+5,10) * q^(k*(k+1)/2) ) / ( Sum_{k>=0} (-1)^k * (2*k+1) * q^(k*(k+1)/2) ).
CROSSREFS
A diagonal of A060043.
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 15 2023
STATUS
approved

Search completed in 0.009 seconds