[go: up one dir, main page]

login
Search: a001878 -id:a001878
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (2n+2)!/(n!*2^(n+1)).
(Formerly M4251 N1775)
+10
21
1, 6, 45, 420, 4725, 62370, 945945, 16216200, 310134825, 6547290750, 151242416325, 3794809718700, 102776096548125, 2988412653476250, 92854250304440625, 3070380543400170000, 107655217802968460625, 3989575718580595893750, 155815096120119939628125
OFFSET
0,2
COMMENTS
From Wolfdieter Lang, Oct 06 2008: (Start)
a(n) is the denominator of the n-th approximant to the continued fraction 1^2/(6+3^2/(6+5^2/(6+... for Pi-3. W. Lang, Oct 06 2008, after an e-mail from R. Rosenthal. Cf. A142970 for the corresponding numerators.
The e.g.f. g(x)=(1+x)/(1-2*x)^(5/2) satisfies (1-4*x^2)*g''(x) - 2*(8*x+3)*g'(x) -9*g(x) = 0 (from the three term recurrence given below). Also g(x)=hypergeom([2,3/2],[1],2*x). (End)
Number of descents in all fixed-point-free involutions of {1,2,...,2(n+1)}. A descent of a permutation p is a position i such that p(i) > p(i+1). Example: a(1)=6 because the fixed-point-free involutions 2143, 3412, and 4321 have 2, 1, and 3 descents, respectively. - Emeric Deutsch, Jun 05 2009
First differences of A193651. - Vladimir Reshetnikov, Apr 25 2016
a(n-2) is the number of maximal elements in the absolute order of the Coxeter group of type D_n. - Jose Bastidas, Nov 01 2021
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77 (Problem 10, values of Bessel polynomials).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
E.g.f.: (1+x)/(1-2*x)^(5/2).
a(n)*n = a(n-1)*(2n+1)*(n+1); a(n) = a(n-1)*(2n+4)-a(n-2)*(2n-1), if n>0. - Michael Somos, Feb 25 2004
From Wolfdieter Lang, Oct 06 2008: (Start)
a(n) = (n+1)*(2*n+1)!! with the double factorials (2*n+1)!!=A001147(n+1).
D-finite with recurrence a(n) = 6*a(n-1) + ((2*n-1)^2)*a(n-2), a(-1)=0, a(0)=1. (End)
With interpolated 0's, e.g.f.: B(A(x)) where B(x)= x exp(x) and A(x)=x^2/2.
G.f.: - G(0)/2 where G(k) = 1 - (2*k+3)/(1 - x/(x - (k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
G.f.: (1-x)/(2*x^2*Q(0)) - 1/(2*x^2), where Q(k)= 1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
From Karol A. Penson, Jul 12 2013: (Start)
Integral representation as n-th moment of a signed function w(x) of bounded variation on (0,infinity),
w(x) = -(1/4)*sqrt(2)*sqrt(x)*(1-x)*exp(-x/2)/sqrt(Pi):
a(n) = Integral_{x>=0} x^n*w(x), n>=0.
For x>1, w(x)>0. w(0)=w(1)=limit(w(x),x=infinity)=0. For x<1, w(x)<0.
Asymptotics: a(n)->(1/576)*2^(1/2+n)*(1152*n^2+1680*n+505)*exp(-n)*(n)^(n), for n->infinity. (End)
G.f.: 2F0(3/2,2;;2x). - R. J. Mathar, Aug 08 2015
MAPLE
restart: G(x):=(1-x)/(1-2*x)^(1/2): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1], x) od:x:=0:seq(f[n], n=2..20); # Zerinvary Lajos, Apr 04 2009
MATHEMATICA
Table[(2n+2)!/(n!2^(n+1)), {n, 0, 20}] (* Vincenzo Librandi, Nov 22 2011 *)
PROG
(PARI) a(n)=if(n<0, 0, (2*n+2)!/n!/2^(n+1))
(Magma) [Factorial(2*n+2)/(Factorial(n)*2^(n+1)): n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
CROSSREFS
Second column of triangle A001497. Equals (A001147(n+1)-A001147(n))/2.
Equals row sums of A163938.
KEYWORD
nonn,easy
EXTENSIONS
Entry revised Aug 31 2004 (thanks to Ralf Stephan and Michael Somos)
E.g.f. in comment line corrected by Wolfdieter Lang, Nov 21 2011
STATUS
approved
Number of divisors of n of the form 5k+1; a(0)=0.
+10
18
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 4, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 1
OFFSET
0,7
LINKS
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
G.f.: Sum_{n>=0} x^(5n+1)/(1-x^(5n+1)).
G.f.: Sum_{n>=1} x^n/(1-x^(5*n)). - Joerg Arndt, Jan 30 2011
Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,5) - (1 - gamma)/5 = A256779 - (1 - A001620)/5 = 0.651363... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
MATHEMATICA
CoefficientList[ Series[ Together[ Sum[ x^n/(1 - x^(5n)), {n, 110}]], {x, 0, 110}], x] (* Robert G. Wilson v, Jan 31 2011 *)
a[n_] := DivisorSum[n, 1 &, Mod[#, 5] == 1 &]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Nov 25 2023 *)
PROG
(PARI) a(n) = if(n==0, 0, sumdiv(n, d, (d % 5) == 1)); \\ Michel Marcus, Feb 25 2021
CROSSREFS
For numbers of divisors of n of the form 5k+i (i=1, 2, 3, 4) see: this sequence, A001877, A001878, A001899.
KEYWORD
nonn,easy
STATUS
approved
Number of divisors of n of the form 5k+2; a(0) = 0.
+10
17
0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 2, 0, 1, 1, 1, 0, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 1, 0, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 3, 0, 2, 0, 1, 1, 2, 1, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 3, 0, 2, 0, 1, 2, 1, 0, 1, 1, 2, 0, 4, 1, 1, 1
OFFSET
0,13
LINKS
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
G.f.: Sum_{n>=0} x^(5n+2)/(1-x^(5n+2)).
G.f.: Sum_{n>=1} x^(2*n)/(1-x^(5*n)). - Joerg Arndt, Jan 30 2011
Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,5) - (1 - gamma)/5 = A256780 - (1 - A001620)/5 = 0.105832... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
MATHEMATICA
Join[{0}, Table[d = Divisors[n]; Length[Select[d, Mod[#, 5] == 2 &]], {n, 100}]] (* T. D. Noe, Aug 10 2012 *)
Table[Count[Divisors[n], _?(Mod[#, 5]==2&)], {n, 0, 90}] (* Harvey P. Dale, May 20 2017 *)
PROG
(PARI) a(n) = if (n==0, 0, sumdiv(n, d, (d % 5)==2)); \\ Michel Marcus, Feb 28 2021
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
Number of divisors of n of the form 5k+4; a(0) = 0.
+10
14
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 2, 0, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 2, 1, 0, 0, 2, 1, 0, 0, 1, 0, 2, 0, 2, 1, 1, 1, 1, 0, 0, 1, 2, 0, 0, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 1, 1, 1, 1, 0, 0, 3, 0, 0
OFFSET
0,25
LINKS
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
G.f.: Sum_{n>=0} x^(5*n+4)/(1 - x^(5*n+4)).
G.f.: Sum_{k>=1} x^(4*k)/(1 - x^(5*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(4,5) - (1 - gamma)/5 = A256849 - (1 - A001620)/5 = -0.213442... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
MATHEMATICA
Join[{0}, Table[d = Divisors[n]; Length[Select[d, Mod[#, 5] == 4 &]], {n, 100}]] (* T. D. Noe, Aug 10 2012 *)
PROG
(PARI) a(n) = if (n==0, 0, sumdiv(n, d, (d % 5)==4)); \\ Michel Marcus, Feb 28 2021
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Better definition from Michael Somos, Aug 31 2004
STATUS
approved
Number of divisors of n of the form 7*k + 3.
+10
11
0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 0, 0, 2, 0, 1, 2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 2, 0, 1, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 2, 0, 0, 3, 0, 0, 2, 1, 0, 2, 0, 0, 1
OFFSET
1,24
LINKS
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
G.f.: Sum_{k>0} x^(3*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-4)/(1 - x^(7*k-4)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,7) - (1 - gamma)/7 = -0.0004108181..., gamma(3,7) = -(psi(3/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 3 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, d%7==3);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 23 2023
STATUS
approved
Number of divisors of 5*n-2 of form 5*k+1.
+10
10
1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 2, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 4, 1, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 3, 1, 1, 3, 1, 1, 5, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 1, 3, 3, 1, 4, 1, 1, 2, 1, 2, 4, 1, 2, 2, 1, 1, 3, 1, 3
OFFSET
1,4
COMMENTS
Also number of divisors of 5*n-2 of form 5*k+3.
LINKS
FORMULA
a(n) = A001876(5*n-2) = A001878(5*n-2).
G.f.: Sum_{k>0} x^k/(1 - x^(5*k-2)).
G.f.: Sum_{k>0} x^(3*k-2)/(1 - x^(5*k-4)).
MATHEMATICA
a[n_] := DivisorSum[5*n-2, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
PROG
(PARI) a(n) = sumdiv(5*n-2, d, d%5==1);
(PARI) a(n) = sumdiv(5*n-2, d, d%5==3);
(PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-2))))
(PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(3*k-2)/(1-x^(5*k-4))))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 22 2022
STATUS
approved
Number of divisors of 5*n-4 of form 5*k+2.
+10
7
0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 3, 0, 1, 1, 1, 0, 3, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 4, 1, 1, 2, 1, 0, 2, 0, 2, 1, 2, 0, 3, 0, 2, 1, 2, 1, 3, 0, 1, 1, 1, 0, 5, 0, 1, 2, 1, 0, 2, 1, 2, 1, 1, 1, 4, 0, 2, 1, 3, 0, 2, 0, 1, 2, 1
OFFSET
1,8
COMMENTS
Also number of divisors of 5*n-4 of form 5*k+3.
LINKS
FORMULA
a(n) = A001877(5*n-4) = A001878(5*n-4).
G.f.: Sum_{k>0} x^(2*k)/(1 - x^(5*k-2)).
G.f.: Sum_{k>0} x^(3*k-1)/(1 - x^(5*k-3)).
MATHEMATICA
a[n_] := DivisorSum[5*n-4, 1 &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
PROG
(PARI) a(n) = sumdiv(5*n-4, d, d%5==2);
(PARI) a(n) = sumdiv(5*n-4, d, d%5==3);
(PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(5*k-2)))))
(PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(3*k-1)/(1-x^(5*k-3)))))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 22 2022
STATUS
approved
Number of divisors of 5*n-3 of form 5*k+3.
+10
6
0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 1, 0, 2, 2, 0, 0, 2, 0, 0, 1, 2, 0, 2, 0, 1, 1, 1, 0, 3, 0, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 4, 0, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 4, 0, 1, 1, 1, 0, 3, 0, 2, 1, 0, 0, 2, 1, 0, 2, 3, 0, 1, 0, 1, 1, 0, 0, 5, 1, 1, 1
OFFSET
1,15
COMMENTS
Also number of divisors of 5*n-3 of form 5*k+4.
LINKS
FORMULA
a(n) = A001878(5*n-3) = A001899(5*n-3).
G.f.: Sum_{k>0} x^(3*k)/(1 - x^(5*k-1)).
G.f.: Sum_{k>0} x^(4*k-1)/(1 - x^(5*k-2)).
MATHEMATICA
a[n_] := DivisorSum[5*n-3, 1 &, Mod[#, 5] == 3 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
PROG
(PARI) a(n) = sumdiv(5*n-3, d, d%5==3);
(PARI) a(n) = sumdiv(5*n-3, d, d%5==4);
(PARI) my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^(5*k-1)))))
(PARI) my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(4*k-1)/(1-x^(5*k-2)))))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 23 2022
STATUS
approved
Expansion of Sum_{k>0} k * x^(3*k) / (1 - x^(5*k)).
+10
5
0, 0, 1, 0, 0, 2, 0, 1, 3, 0, 0, 4, 1, 0, 5, 2, 0, 7, 0, 0, 7, 0, 1, 11, 0, 2, 9, 1, 0, 10, 0, 4, 12, 0, 0, 14, 0, 1, 16, 5, 0, 14, 1, 0, 15, 2, 0, 23, 0, 0, 17, 4, 1, 21, 0, 9, 19, 1, 0, 20, 0, 0, 22, 8, 5, 24, 0, 1, 26, 0, 0, 37, 1, 0, 25, 2, 0, 33, 0, 10, 27, 0, 1, 31, 0, 2, 29, 12, 0
OFFSET
1,6
LINKS
FORMULA
a(n) = Sum_{d|n, n/d==3 mod 5} d.
G.f.: Sum_{k>0} x^(5*k-2) / (1 - x^(5*k-2))^2.
MATHEMATICA
a[n_] := DivisorSum[n, # &, Mod[n/#, 5] == 3 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (n/d%5==3)*d);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 27 2023
STATUS
approved
a(n) = Sum_{k>=0} floor(n/(5*k + 3)).
+10
4
0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 8, 10, 10, 10, 11, 11, 12, 14, 14, 15, 16, 17, 17, 18, 18, 19, 21, 21, 21, 23, 23, 24, 26, 27, 27, 28, 29, 29, 30, 31, 31, 34, 34, 34, 35, 36, 37, 39, 39, 41, 42, 43, 43, 44, 44, 44, 46, 47, 48, 50, 50, 51, 53, 53, 53, 56, 57, 57, 58, 59, 59, 62, 62, 63
OFFSET
0,7
COMMENTS
Partial sums of A001878.
LINKS
MATHEMATICA
Accumulate[Table[Count[Divisors[n], _?(Mod[#, 5]==3&)], {n, 0, 90}]] (* Harvey P. Dale, Nov 08 2012 *)
PROG
(PARI) a(n)=sum(k=0, n, (n\(5*k+3)))
(Maxima) A218446[n]:=sum(floor(n/(5*k+3)), k, 0, n)$
makelist(A218446[n], n, 0, 80); /* Martin Ettl, Oct 29 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 28 2012
STATUS
approved

Search completed in 0.010 seconds