[go: up one dir, main page]

login
Search: a001066 -id:a001066
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that the continued fraction for sqrt(k) has period 2.
+10
9
3, 6, 8, 11, 12, 15, 18, 20, 24, 27, 30, 35, 38, 39, 40, 42, 48, 51, 56, 63, 66, 68, 72, 80, 83, 84, 87, 90, 99, 102, 104, 105, 110, 120, 123, 132, 143, 146, 147, 148, 150, 152, 156, 168, 171, 182, 195, 198, 200, 203, 210, 224, 227, 228, 230, 231, 235, 240, 255, 258, 260, 264
OFFSET
1,1
COMMENTS
This sequence is identical to the sequence of numbers of the form k = a^2 + b, where a and b are positive integers and b is a factor of 2a greater than 1, in which case the continued fraction expansion of sqrt(k) is [a; [2a/b, 2a]]. - David Terr, Jun 11 2004
REFERENCES
Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors!)
MATHEMATICA
cf2Q[n_]:=Module[{s=Sqrt[n]}, If[IntegerQ[s], 1, Length[ ContinuedFraction[ s][[2]]]]==2]; Select[Range[300], cf2Q] (* Harvey P. Dale, Jun 21 2017 *)
KEYWORD
nonn
STATUS
approved
Dimensions of split simple Lie algebras over any field of characteristic zero.
(Formerly M2712)
+10
3
3, 8, 10, 14, 15, 21, 24, 28, 35, 36, 45, 48, 52, 55, 63, 66, 78, 80, 91, 99, 105, 120, 133, 136, 143, 153, 168, 171, 190, 195, 210, 224, 231, 248, 253, 255, 276, 288, 300, 323, 325, 351, 360, 378, 399, 406, 435, 440, 465, 483, 496, 528, 561, 575, 595, 624, 630
OFFSET
1,1
REFERENCES
Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635-652.
N. Jacobson, Lie Algebras. Wiley, NY, 1962; pp. 141-146.
I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal., 13 (1982), 988-1007.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
EXAMPLE
The Lie algebras in question and their dimensions are the following:
A_l: l(l+2), l >= 1,
B_l: l(2l+1), l >= 2,
C_l: l(2l+1), l >= 3,
D_l: l(2l-1), l >= 4,
G_2: 14, F_4: 52, E_6: 78, E_7: 133, E_8: 248.
MAPLE
M:=4200; M2:=M^2; sa:=[seq(l*(l+2), l=1..M)]; sb:=[seq(l*(2*l+1), l=2..M)]; sd:=[seq(l*(2*l-1), l=4..M)]; se:=[14, 52, 78, 133, 248]; s:=convert(sa, set) union convert(sb, set) union convert(sd, set) union convert(se, set); t:=convert(s, list); for i from 1 to nops(t) do if t[i] <= M2 then lprint(i, t[i]); fi; od:
MATHEMATICA
max = 26; sa = Table[ k*(k+2), {k, 1, max}]; sb = Table[ k*(2k+1), {k, 2, max}]; sd:= Table[ k*(2k-1), {k, 4, max}]; se = {14, 52, 78, 133, 248}; Select[ Union[sa, sb, sd, se], # <= max^2 &](* Jean-François Alcover, Nov 18 2011, after Maple *)
PROG
(Haskell)
import Data.Set (deleteFindMin, fromList, insert)
a003038 n = a003038_list !! (n-1)
a003038_list = f (fromList (3 : [14, 52, 78, 133, 248]))
(drop 2 a005563_list) (drop 4 a000217_list) where
f s (x:xs) (y:ys) = m : f (x `insert` (y `insert` s')) xs ys where
(m, s') = deleteFindMin s
-- Reinhard Zumkeller, Dec 16 2012
CROSSREFS
Subsequences, apart from some initial terms: A000217, A000384, A005563, A014105.
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004
STATUS
approved
Eigentriangle by rows, A001006(n-k)*A005773(k); 0<=k<=n.
+10
0
1, 1, 1, 2, 1, 2, 4, 2, 2, 5, 9, 4, 4, 5, 13, 21, 9, 8, 10, 13, 35, 51, 21, 18, 20, 26, 35, 96, 127, 51, 42, 45, 52, 70, 96, 267, 323, 127, 102, 105, 117, 140, 192, 267, 750, 835, 323, 254, 255, 273, 315, 384, 534, 720, 2123, 2188, 835, 646, 635, 663, 735, 864, 1068
OFFSET
0,4
COMMENTS
Left border = Motzkin numbers, A001006.
Right border = A005773.
Row sums = A005773 shifted: (1, 2, 5, 13, 35, 96, 267,...).
Sum of n-th row terms = rightmost term of next row.
FORMULA
Eigentriangle by rows, A001006(n-k)*A005773(k); 0<=k<=n.
EXAMPLE
First few rows of the triangle =
1;
1, 1;
2, 1, 2;
4, 2, 2, 5;
9, 4, 4, 5, 13;
21, 9, 8, 10, 13, 35;
51, 21, 18, 20, 26, 35, 96;
127, 51, 42, 45, 52, 70, 96, 267;
323, 127, 102, 105, 117, 140, 192, 267, 750;
835, 323, 254, 255, 273, 315, 384, 534, 720, 2123;
...
Row 3 = (4, 2, 2, 5) = termwise product of (4, 2, 1, 1) and the first 4 terms of A005773: (1, 1, 2, 5) = (4*1, 2*1, 1*2, 1*5). (4, 2, 1, 1) = the first 4 terms of A001066, reversed.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Sep 07 2008
STATUS
approved

Search completed in 0.010 seconds