[go: up one dir, main page]

login
Search: a000459 -id:a000459
     Sort: relevance | references | number | modified | created      Format: long | short | data
Duplicate of A000459.
+20
0
1, 0, 1, 10, 297, 13756, 925705, 85394646, 10351036465, 1596005408152
OFFSET
0,4
KEYWORD
dead
AUTHOR
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
STATUS
approved
9 times the triangular numbers A000217.
+10
28
0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315
OFFSET
0,2
COMMENTS
Staggered diagonal of triangular spiral in A051682, between (0,1,11) spoke and (0,8,25) spoke. - Paul Barry, Mar 15 2003
Number of permutations of n distinct letters (ABCD...) each of which appears thrice with n-2 fixed points. - Zerinvary Lajos, Oct 15 2006
Number of n permutations (n>=2) of 4 objects u, v, z, x with repetition allowed, containing n-2=0 u's. Example: if n=2 then n-2 =zero (0) u, a(1)=9 because we have vv, zz, xx, vx, xv, zx, xz, vz, zv. A027465 formatted as a triangular array: diagonal: 9, 27, 54, 90, 135, 189, 252, 324, ... . - Zerinvary Lajos, Aug 06 2008
a(n) is also the least weight of self-conjugate partitions having n different parts such that each part is a multiple of 3. - Augustine O. Munagi, Dec 18 2008
Also sequence found by reading the line from 0, in the direction 0, 9, ..., and the same line from 0, in the direction 0, 27, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Axis perpendicular to A195147 in the same spiral. - Omar E. Pol, Sep 18 2011
Sum of the numbers from 4*n to 5*n. - Wesley Ivan Hurt, Nov 01 2014
LINKS
Augustine O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., Vol. 308, No. 12 (2008), pp. 2492-2501.
Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
D. Zvonkine, Home Page.
FORMULA
Numerators of sequence a[n, n-2] in (a[i, j])^2 where a[i, j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = (9/2)*n*(n+1).
a(n) = 9*C(n, 1) + 9*C(n, 2) (binomial transform of (0, 9, 9, 0, 0, ...)). - Paul Barry, Mar 15 2003
G.f.: 9*x/(1-x)^3.
a(-1-n) = a(n).
a(n) = 9*C(n+1,2), n>=0. - Zerinvary Lajos, Aug 06 2008
a(n) = a(n-1) + 9*n (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
a(n) = A060544(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A218470(9*n+8). - Philippe Deléham, Mar 27 2013
E.g.f.: (9/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 22 2017
a(n) = A060544(n+1) - 1. See Centroid Triangles illustration. - Leo Tavares, Dec 27 2021
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 2/9. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(9/(2*Pi))*cos(sqrt(17)*Pi/6).
Product_{n>=1} (1 + 1/a(n)) = 9*sqrt(3)/(4*Pi). (End)
EXAMPLE
The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4 are 3+3+3, 6+6+6+3+3+3, 9+9+9+6+6+6+3+3+3, 12+12+12+9+9+9+6+6+6+3+3+3. - Augustine O. Munagi, Dec 18 2008
MAPLE
[seq(9*binomial(n+1, 2), n=0..50)]; # Zerinvary Lajos, Nov 24 2006
MATHEMATICA
Table[(9/2)*n*(n+1), {n, 0, 50}] (* G. C. Greubel, Aug 22 2017 *)
PROG
(PARI) a(n)=9*n*(n+1)/2
(Magma) [9*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Dec 29 2012
(Sage) [9*binomial(n+1, 2) for n in (0..50)] # G. C. Greubel, May 20 2021
KEYWORD
nonn,easy
EXTENSIONS
More terms from Patrick De Geest, Oct 15 1999
STATUS
approved
Card-matching numbers (Dinner-Diner matching numbers).
+10
10
1, 0, 1, 56, 13833, 6699824, 5691917785, 7785547001784, 16086070907249329, 47799861987366600992, 196500286135805946117201, 1082973554682091552092493880, 7797122311868240909226166565881
OFFSET
0,4
COMMENTS
A deck has n kinds of cards, 3 of each kind. The deck is shuffled and dealt in to n hands with 3 cards each. A match occurs for every card in the j-th hand of kind j. A(n) is the number of ways of achieving no matches. The probability of no matches is A(n)/((3n)!/3!^n).
Number of fixed-point-free permutations of n distinct letters (ABCD...), each of which appears thrice. If there is only one letter of each type we get A000166. - Zerinvary Lajos, Oct 15 2006
a(n) is the maximal number of totally mixed Nash equilibria in games of n players, each with 4 pure options. - Raimundas Vidunas, Jan 22 2014
REFERENCES
F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
LINKS
F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
Barbara H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
R. D. McKelvey and A. McLennan, The maximal number of regular totally mixed Nash equilibria, J. Economic Theory, 72 (1997), 411-425.
S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
Raimundas Vidunas, MacMahon's master theorem and totally mixed Nash equilibria, arXiv preprint arXiv:1401.5400 [math.CO], 2014.
Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
FORMULA
G.f.: Sum_{j=0..n*k} coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)! where n is the number of kinds of cards, k is the number of cards of each kind (3 in this case) and R(x, n, k) is the rook polynomial given by R(x, n, k) = k!^2*Sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the coefficient for x^j of the rook polynomial.
EXAMPLE
There are 56 ways of achieving zero matches when there are 3 cards of each kind and 3 kinds of card so a(3)=56.
MAPLE
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); seq(f(0, n, 3)/3!^n, n=0..18);
MATHEMATICA
p[x_, k_] := k!^2*Sum[x^j/((k-j)!^2*j!), {j, 0, k}]; R[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[Coefficient[R[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[f[0, n, 3]/3!^n, {n, 0, 12}] (* Jean-François Alcover, May 21 2012, translated from Maple *)
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
STATUS
approved
Two decks each have n kinds of cards, 2 of each kind. The first deck is laid out in order. The second deck is shuffled and laid out next to the first. A match occurs if a card from the second deck is next to a card of the same kind from the first deck. a(n) is the number of ways of achieving no matches.
(Formerly M3702 N1513)
+10
9
1, 0, 4, 80, 4752, 440192, 59245120, 10930514688, 2649865335040, 817154768973824, 312426715251262464, 145060238642780180480, 80403174342119992692736, 52443098500204184915312640, 39764049487996490505336537088
OFFSET
0,3
COMMENTS
Each deck contains 2n cards.
The probability of no matches is a(n)/(2n)!.
n couples meet for a party and they exchange gifts. Each of the 2n writes their name on a piece of paper and puts it into a hat. They take turns drawing names and give their gift to the person whose name they drew. If anyone draws either their own name or the name of their partner, everyone puts the name they have drawn back into the hat and everyone draws anew. a(n) is the number of different permissible drawings. - Dan Dima, Dec 17 2006
(2n)! / a(n) is the expected number of deck shuffles until no matches occur. a(n) / (2n)! is the probability for a permissible drawing to be achieved. (2n)! / a(n) is the expected number of drawings before a permissible drawing is achieved. As n goes to infinity (2n)! / a(n) will strictly decrease very slowly to e^2 ~ 7.38906 (starting from n > 2) - Dan Dima, Dec 17 2006
a(n) equals the permanent of the (2n)X(2n) matrix with 0's along the main diagonal and the antidiagonal, and 1's everywhere else. - John M. Campbell, Jul 11 2011
Also, number of permutations p of (1,...,2n) such that round(p(k)/2) != round(k/2) for all k=1,...,2n (where half-integers are rounded up). - M. F. Hasler, Sep 30 2015
REFERENCES
F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 187.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
John Riordan and N. J. A. Sloane, Correspondence, 1974
E. I. Vatutin, A. D. Belyshev, N. N. Nikitina, and M. O. Manzuk, Use of X-based diagonal fillings and ESODLS CMS schemes for enumeration of main classes of diagonal Latin squares, Telecommunications, 2023, No. 1, pp. 2-16, DOI: 10.31044/1684-2588-2023-0-1-2-16 (in Russian).
FORMULA
a(n) = A000459(n)*2^n.
G.f.: Sum_{j=0..n*k} coeff(R(x, n, k), x, j)*(-1)^j*(n*k-j)! where n is the number of kinds of cards, k is the number of cards of each kind (2 in this case) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*Sum_{j=0..k} x^j/((k-j)!^2*j!))^n (see Riordan). coeff(R(x, n, k), x, j) indicates the coefficient for x^j of the rook polynomial.
From Dan Dima, Dec 17 2006: (Start)
a(n) = n! * Sum_{a,b >= 0, a+b <= n} (-1)^b * 2^(a+2*b) * (2*n-2*a-b)! / (a! * b! * (n-a-b)!).
a(n) = n * a(n-1) + n! * 4^n * Sum_{a=0..n} (-1)^a / (a! * 2^a). (End)
a(n) = 2^n * round(2^(n/2 + 3/4)*Pi^(-1/2)*exp(-2)*n!*BesselK(1/2+n,2^(1/2))) for n > 0. - Mark van Hoeij, Oct 30 2011
Recurrence: (2*n-3)*a(n) = 2*(n-1)*(2*n-1)^2*a(n-1) + 4*(n-1)*(2*n-3)*a(n-2) - 16*(n-2)*(n-1)*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 07 2013
From Peter Bala, Jul 07 2014: (Start)
a(n) = Integral_{x>=0} exp(-x)*(x^2 - 4*x + 2)^n dx. Cf. A000166(n) = Integral_{x>=0} exp(-x)*(x - 1)^n dx.
Asymptotic: a(n) ~ (2*n)!*exp(-2)*( 1 - 1/(2*n) - 23/(96*n^2) + O(1/n^3) ). See Nicolaescu. (End)
EXAMPLE
There are 80 ways of achieving zero matches when there are 2 cards of each kind and 3 kinds of card so a(3)=80.
Among the 24 (multiset) permutations of {1,1',2,2'}, only {2,2',1,1'}, {2',2,1,1'}, {2,2',1',1} and {2',2,1',1} have no fixed points, thus a(2)=4.
MAPLE
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); seq(f(0, n, 2), n=0..18);
MATHEMATICA
(* b = A000459 *)
b[n_] := b[n] = Switch[n, 0, 1, 1, 0, 2, 1, _, n(2n-1) b[n-1] + 2n(n-1) b[n-2] - (2n-1)];
a[n_] := b[n] * 2^n;
Array[a, 14] (* Jean-François Alcover, Oct 30 2019 *)
PROG
(PARI) a(n)=if(n==0, 1, round(2^(n/2+3/4)/Pi^.5*exp(-2)*n!*besselk(1/2+n, 2^.5))<<n) \\ requires sufficient realprecision. - M. F. Hasler, Sep 27 2015
(PARI) \\ Illustration of the multiset-fixed-point interpretation
count(n, c=ceil(vector(n, i, i)/2))=sum(k=1, n!, !setsearch(Set(ceil(Vec(numtoperm(n, k))/2)-c), 0))
a(n) = count(2*n) \\ M. F. Hasler, Sep 30 2015
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
Formulae, more terms etc. from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 22 2000
Edited by M. F. Hasler, Sep 27 2015 and N. J. A. Sloane, Oct 02 2015
a(0)=1 prepended by Andrew Howroyd, Oct 09 2020
STATUS
approved
Number of multiset permutations of {1, 1, 2, 2, ..., n, n} with no fixed pair (j,j).
+10
7
1, 0, 5, 74, 2193, 101644, 6840085, 630985830, 76484389121, 11792973495032, 2254432154097861, 523368281765512930, 145044815855963403985, 47302856057098946329284, 17933275902554972391519893, 7820842217155394547769452734, 3887745712142302082441578104705
OFFSET
0,3
COMMENTS
Inverse binomial transform of A000680.
LINKS
FORMULA
a(n) = Sum_{j=0..n} (-1)^j*binomial(n,j)*A000680(n-j).
a(n) = A116218(n)/2^n.
a(n) mod 2 = 1 - (n mod 2) = A059841(n).
EXAMPLE
a(2) = 5: 1212, 1221, 2112, 2121, 2211.
MAPLE
a:= proc(n) option remember; `if`(n<3, [1, 0, 5][n+1],
(n-1)*((2*n+1)*a(n-1)+(4*n-3)*a(n-2)+2*(n-2)*a(n-3)))
end:
seq(a(n), n=0..16);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 05 2024
STATUS
approved
Square array read by antidiagonals: T(n,k) is the number of derangements of a multiset comprising n repeats of a k-element set.
+10
6
1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 9, 10, 1, 0, 1, 1, 44, 297, 56, 1, 0, 1, 1, 265, 13756, 13833, 346, 1, 0, 1, 1, 1854, 925705, 6699824, 748521, 2252, 1, 0, 1, 1, 14833, 85394646, 5691917785, 3993445276, 44127009, 15184, 1, 0, 1
OFFSET
0,12
COMMENTS
A deck has k suits of n cards each. The deck is shuffled and dealt into k hands of n cards each. A match occurs for every card in the i-th hand of suit i. T(n,k) is the number of ways of achieving no matches. The probability of no matches is T(n,k)/((n*k)!/n!^k).
T(n,k) is the maximal number of totally mixed Nash equilibria in games of k players, each with n+1 pure options.
LINKS
S. Even and J. Gillis, Derangements and Laguerre polynomials, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143.
B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), pp. 107-118.
Jeremy Tan, Python program
Raimundas Vidunas, MacMahon's master theorem and totally mixed Nash equilibria, arXiv:1401.5400 [math.CO], 2014.
Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
FORMULA
T(n,k) = (-1)^(n*k) * Integral_{x=0..oo} exp(-x)*L_n(x)^k dx, where L_n(x) is the Laguerre polynomial of degree n (Even and Gillis).
T(n,k) ~ A089759(n,k)/exp(n).
EXAMPLE
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 0, 1, 2, 9, 44, ...
1, 0, 1, 10, 297, 13756, ...
1, 0, 1, 56, 13833, 6699824, ...
1, 0, 1, 346, 748521, 3993445276, ...
1, 0, 1, 2252, 44127009, 2671644472544, ...
1, 0, 1, 15184, 2750141241, 1926172117389136, ...
1, 0, 1, 104960, 178218782793, 1463447061709156064, ...
MAPLE
A:= (n, k)-> (-1)^(n*k)*int(exp(-x)*orthopoly[L](n, x)^k, x=0..infinity):
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 27 2024
MATHEMATICA
Table[Abs[Integrate[Exp[-x] LaguerreL[n, x]^(s-n), {x, 0, Infinity}]], {s, 0, 9}, {n, 0, s}] // Flatten
PROG
(Python) # See link.
CROSSREFS
Columns 0-4 give A000012, A000007, A000012, A000172, A371252.
Main diagonal gives A375778.
KEYWORD
nonn,tabl
AUTHOR
Jeremy Tan, Apr 26 2024
STATUS
approved
Number of alternating permutations of the multiset {1,1,2,2,...,n,n}.
+10
4
1, 0, 1, 4, 53, 936, 25325, 933980, 45504649, 2824517520, 217690037497, 20394614883316, 2282650939846781, 300814135522967736, 46103574973075123877, 8130996533576437261772, 1635028654501420083152785, 371853339350614571322913824, 94969025880924845123887493233
OFFSET
0,4
COMMENTS
Number of permutations (p(1),...,p(2n)) of {1,1,2,2,...,n,n} satisfying p(1) < p(2) > p(3) < ... < p(2n).
a(n) <= A005799(n) <= A275829(n).
LINKS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Aug 09 2016
STATUS
approved
Number of weakly alternating permutations of the multiset {1,1,2,2,...,n,n}.
+10
3
1, 1, 2, 12, 140, 2564, 68728, 2539632, 123686800, 7677924688, 591741636128, 55438330474944, 6204888219697856, 817697605612952384, 125322509904814743424, 22102340129003429880576, 4444468680409243484516608, 1010802175212828388101900544, 258152577318424951261637001728
OFFSET
0,3
COMMENTS
Number of permutations (p(1),...,p(2n)) of {1,1,2,2,...,n,n} satisfying p(1) <= p(2) >= p(3) <= p(4) >= p(5) <= ... <= p(2n).
a(n) >= A005799(n) >= A275801(n).
LINKS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Aug 11 2016
STATUS
approved
Number of X-based filling of diagonals in a diagonal Latin square of order n.
+10
2
1, 1, 0, 0, 96, 480, 57600, 403200, 191600640, 1724405760, 1597368729600, 17571056025600, 28378507272192000, 368920594538496000, 952903592436341145600, 14293553886545117184000, 55442575636536644075520000, 942523785821122949283840000, 5231730206388249282710863872000
OFFSET
0,5
COMMENTS
Used for getting strong canonical forms (SCFs) of the diagonal Latin squares and for fast enumerating of the diagonal Latin squares based on equivalence classes.
LINKS
S. Kochemazov, O. Zaikin, E. Vatutin E., and A. Belyshev, Enumerating Diagonal Latin Squares of Order Up to 9, Journal of Integer Sequences. Vol. 23. Iss. 1. 2020. Article 20.1.2.
E. I. Vatutin, A. D. Belyshev, N. N. Nikitina, and M. O. Manzuk, Use of X-based diagonal fillings and ESODLS CMS schemes for enumeration of main classes of diagonal Latin squares, Telecommunications, 2023, No. 1, pp. 2-16, DOI: 10.31044/1684-2588-2023-0-1-2-16 (in Russian).
FORMULA
a(n) = A337302(n)*n!.
a(n) = n!*A000316(floor(n/2)). - Andrew Howroyd, Mar 26 2023
EXAMPLE
One of the 96 X-based fillings of diagonals of a diagonal Latin square for order n=4:
1 . . 0
. 0 1 .
. 3 2 .
2 . . 3
PROG
(PARI) \\ here b(n) is A000459.
b(n) = {sum(m=0, n, sum(k=0, n-m, (-1)^k * binomial(n, k) * binomial(n-k, m) * 2^(2*k+m-n) * (2*n-2*m-k)! )); }
a(n) = {2^(n\2) * b(n\2) * n!} \\ Andrew Howroyd, Mar 26 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Eduard I. Vatutin, Aug 22 2020
EXTENSIONS
a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Mar 26 2023
STATUS
approved
Number of permutations of n distinct letters (ABCD...) each of which appears thrice with n-3 fixed points.
+10
1
0, 0, 54, 216, 540, 1080, 1890, 3024, 4536, 6480, 8910, 11880, 15444, 19656, 24570
OFFSET
0,3
EXAMPLE
Maple produces the following triangle - the entries in quotes give the sequence:
1
"0", 0, 0, 1
1, 0, 9, "0", 9, 0, 1
56, 216, 378, 435, 324, 189, "54", 27, 0, 1
13833, 49464, 84510, 90944, 69039, 38448, 16476, 5184, 1431, "216", 54, 0, 1
6699824, 23123880, 38358540, 40563765, 30573900, 17399178, 7723640, 2729295, 776520, 180100, 33372, 5355, "540", 90, 0, 1
etc...
MAPLE
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); for n from 0 to 6 do seq(coeff(f(t, n, 3), t, m)/3!^n, m=0..3*n); od;
CROSSREFS
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, Nov 01 2006
STATUS
approved

Search completed in 0.021 seconds