editing
proposed
editing
proposed
lista(nn) = {my(lim = pp(ip(nn))); my(v = vector(lim, k, k++; k/sopf(k))); my(w = vector(nn-1, k, #select(x->(x==k+1), v))); select(x->isprime(x), apply(x->x+1, Vec(select(x->(x==1), w, 1)))); } \\ Michel Marcus, Jul 19 2020~
proposed
editing
editing
proposed
(PARI) sopf(n) = vecsum(factor(n)[, 1]); \\ A008472
pp(n) = prod(k=1, n, prime(k)); \\ A002110
sp(n) = sum(k=1, n, prime(k)); \\ A007504
ip(n) = {my(k=1); while (pp(k)/sp(k) <= n, k++); k+1; }
lista(nn) = {my(lim = pp(ip(nn))); my(v = vector(lim, k, k++; k/sopf(k))); my(w = vector(nn-1, k, #select(x->(x==k+1), v))); select(x->isprime(x), apply(x->x+1, Vec(select(x->(x==1), w, 1)))); } \\ Michel Marcus, Jul 19 2020~
proposed
editing
editing
proposed
4 is the unique integer x such that x = 2*sopf(x), a prime, so 2 is a term.
proposed
editing
editing
proposed
Prime numbres numbers p such that equation x = p*sopf(x) (where sopf(x) is the sum of distinct prime factors of x) has exactly 1 solution in positive integers.
Vladimir Letsko, <a href="https://dxdy.ru/post1257616.html#p1257616">Mathematical Marathon, Problem 227</a> (in Russian).
proposed
editing
editing
proposed
allocated for Vladimir LetskoPrime numbres p such that equation x = p*sopf(x) (where sopf(x) is the sum of distinct prime factors of x) has exactly 1 solution in positive integers.
2, 61, 97, 113, 151, 173, 241, 277, 317, 353, 389, 449, 457, 593, 601, 607, 653, 673, 683, 727, 733, 797, 907, 929, 941, 947, 953, 977, 997, 1021, 1051, 1087, 1153, 1181, 1193, 1217, 1249, 1307, 1321, 1361, 1373, 1409, 1433, 1489, 1493, 1523, 1553, 1579, 1597, 1609, 1627
1,1
Vladimir Letsko, <a href="https://dxdy.ru/post1257616.html#p1257616">Mathematical Marathon, Problem 227</a> (in Russian)
allocated
nonn
Vladimir Letsko, Jul 16 2020
approved
editing