proposed
reviewed
proposed
reviewed
editing
proposed
11, 84, 1027, 15627, 279937, 5764801, 134217727, 2749609302, 70077777775, 1997331745489, 62412976762502, 2120126221988685, 77784048573561750, 30652572339474609291997331745490, 62412976762503, 2120126221988686, 77784048573561751, 3065257233947460930
Terms a(9)-a(13) corrected by Nicholas Matteo, Aug 15 2019
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
11, 84, 1027, 15627, 279937, 5764801, 134217727, 2749609302, 70077777775, 1997331745489, 62412976762502, 2120126221988685, 77784048573561750, 3065257233947460929
(PARI) lista(nn) = {print1(a = 10, 11, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
nonn,new,fini
approved
editing
proposed
approved
editing
proposed
allocated for Natan Arie' Consigli
a(n) = G_n(11), where G is the Goodstein function defined in A266201.
84, 1027, 15627, 279937, 5764801, 134217727, 2749609302, 70077777775, 1997331745489, 62412976762502, 2120126221988685, 77784048573561750, 3065257233947460929
0,1
G_1(11) = B_2(11)-1 = B_2(2^(2+1)+2+1)-1 = 3^(3+1)+3+1-1 = 84;
G_2(11) = B_3(3^(3+1)+3)-1 = 4^(4+1)+4-1 = 1027;
G_3(11) = B_4(4^(4+1)+3)-1 = 5^(5+1)+3-1 = 15627;
G_4(11) = B_5(5^(5+1)+2)-1 = 6^(6+1)+2-1 = 279937;
G_5(11) = B_6(6^(6+1)+1)-1 = 7^(7+1)+1-1 = 5764801;
G_6(11) = B_7(7^(7+1))-1 = 8^(8+1)-1 = 134217727.
(PARI) lista(nn) = {print1(a = 10, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
allocated
nonn
Natan Arie' Consigli, Apr 11 2016
approved
editing