[go: up one dir, main page]

login
Revision History for A180861 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

newer changes | Showing entries 11-20 | older changes
Wiener index of the n-pan graph.
(history; published version)
#16 by Bruno Berselli at Fri Sep 08 11:07:00 EDT 2017
FORMULA

a(n) = (1/8)*n*(n^2 +2n 2*n + 8) if n is even; a(n) = (1/8)*(n^3 +2n 2*n^2 +7n 7*n - 2) if n is odd.

From R. J. Mathar, Sep 29 2010: (Start)

a(n) = +2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6). - _R. J. Mathar_, Sep 29 2010

G.f.: (x ^3*(1 + 2 *x - x^2 + x^4))/((-1 + - x)^4 *(1 + x)^2). - _R. J. Mathar_, Sep 29 2010(End)

a(n) = (-2 + 15*n + 4*n^2 + 2*n^3 + (-1)^n* (2 + n))/16. - Eric W. Weisstein, Sep 08 2017

MATHEMATICA

CoefficientList[Series[(1 + 2 x - x^2 + x^4)/((-1 + - x)^4 (1 + x)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)

STATUS

proposed

editing

#15 by Michel Marcus at Fri Sep 08 10:15:47 EDT 2017
STATUS

editing

proposed

#14 by Michel Marcus at Fri Sep 08 10:15:32 EDT 2017
COMMENTS

The n-pan graph is obtained by joining with an edge a node in the cycle graph C_n to the singleton graph P_1. The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.

a(n)=A180860(n,1).

FORMULA

a(n) = A180860(n,1).

a(n) = (1/8)n(n^2+2n+8) if n is even; a(n)=(1/8)(n^3+2n^2+7n-2) if n is odd.

a(n)=(1/8)(n^3+2n^2+7n-2) if n is odd.

CROSSREFS

Cf. A180860

First column of A180860.

STATUS

proposed

editing

#13 by Eric W. Weisstein at Fri Sep 08 10:10:30 EDT 2017
STATUS

editing

proposed

#12 by Eric W. Weisstein at Fri Sep 08 10:10:28 EDT 2017
NAME

The Wiener index of the n-pan graph. The n-pan graph is obtained by joining with an edge a node in the cycle graph C_n to the singleton graph P_1. The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.

Wiener index of the n-pan graph.

DATA

1, 4, 8, 16, 26, 42, 61, 88, 119, 160, 206, 264, 328, 406, 491, 592, 701, 828, 964, 1120, 1286, 1474, 1673, 1896, 2131, 2392, 2666, 2968, 3284, 3630, 3991, 4384, 4793, 5236, 5696, 6192, 6706, 7258, 7829, 8440, 9071, 9744, 10438, 11176, 11936, 12742, 13571, 14448

OFFSET

3,12

COMMENTS

Extended to a(1)-a(2) using the formula/recurrence.

LINKS

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PanGraph.html">Pan Graph</a>.

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TadpoleGraph.html">Tadpole Graph</a>.

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WienerIndex.html">Wiener Index</a>

FORMULA

a(n)= +2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6). G.f.: x^3*(8-14*x^2+6*x^3+7*x^4-4*x^5)/((1+x)^2*(x-1)^4). [From _ _R. J. Mathar_, Sep 29 2010]

G.f.: (x (1 + 2 x - x^2 + x^4))/((-1 + x)^4 (1 + x)^2). - R. J. Mathar, Sep 29 2010

MAPLE

a := proc (n) if `mod`(n, 2) = 0 then (1/8)*n*(n^2+2*n+8) else (1/8)*n^3+(1/4)*n^2+(7/8)*n-1/4 end if end proc: seq(a(n), n = 3 1 .. 50);

MATHEMATICA

LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 4, 8, 16, 26, 42, 61, 88}, 50] (* Harvey P. Dale, Jun 04 2015 *)

Table[(-2 + 15 n + 4 n^2 + 2 n^3 + (-1)^n (2 + n))/16, {n, 20}] (* Eric W. Weisstein, Sep 08 2017 *)

CoefficientList[Series[(1 + 2 x - x^2 + x^4)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)

EXTENSIONS

a(1)-a(2) from Eric W. Weisstein, Sep 08 2017

STATUS

approved

editing

#11 by R. J. Mathar at Mon May 02 05:40:31 EDT 2016
STATUS

editing

approved

#10 by R. J. Mathar at Mon May 02 05:40:24 EDT 2016
LINKS

<a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1). [From _R. J. Mathar_, Sep 29 2010]

KEYWORD

nonn,easy

STATUS

approved

editing

#9 by Charles R Greathouse IV at Sat Jun 13 00:53:40 EDT 2015
LINKS

<a href="/index/Rec">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1). [From R. J. Mathar, Sep 29 2010]

Discussion
Sat Jun 13
00:53
OEIS Server: https://oeis.org/edit/global/2439
#8 by Charles R Greathouse IV at Fri Jun 12 15:27:32 EDT 2015
LINKS

<a href="/index/Rea#recLCCRec">Index to sequences with linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1). [From R. J. Mathar, Sep 29 2010]

Discussion
Fri Jun 12
15:27
OEIS Server: https://oeis.org/edit/global/2436
#7 by Harvey P. Dale at Thu Jun 04 09:42:52 EDT 2015
STATUS

editing

approved