[go: up one dir, main page]

login
Revision History for A146340 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

newer changes | Showing entries 11-20
Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 17.
(history; published version)
#10 by Jon E. Schoenfield at Sun Aug 06 21:21:56 EDT 2017
STATUS

editing

approved

#9 by Jon E. Schoenfield at Sun Aug 06 21:21:52 EDT 2017
NAME

Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 17.

MAPLE

A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic', 'quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146340 := proc(n) RETURN(A146326(n) = 17) ; end: for n from 2 do if isA146340(n) then printf("%d, \n", n) ; fi; od: [From _# _R. J. Mathar_, Sep 06 2009]

EXTENSIONS

998 and 1006 removed, sequence extended - _by _R. J. Mathar_, Sep 06 2009

STATUS

approved

editing

#8 by T. D. Noe at Wed Nov 06 13:26:36 EST 2013
STATUS

editing

approved

#7 by T. D. Noe at Wed Nov 06 13:26:30 EST 2013
NAME

Numbers k such that continued fraction of (1+Sqrt[sqrt(k]))/2 has period 17.

EXAMPLE

a(1) = 521 because continued fraction of (1+Sqrt[sqrt(521]))/2 = 11, 1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21, 1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21, 1, 10, 2, 5, ... has period (1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21) length 17.

MATHEMATICA

s = 10; aa = {}; Do[k = ContinuedFraction[(1 + Sqrt[n])/2, 1000]; If[Length[k] < 190, AppendTo[aa, 0], m = 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; s = s + 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; AppendTo[aa, m]], {n, 1, 500}]; bb = {}; Do[If[aa[[n]] == 17, AppendTo[bb, n]], {n, 1, Length[aa]}]; bb (*Artur Jasinski*)

STATUS

proposed

editing

#6 by Michel Marcus at Wed Nov 06 12:39:57 EST 2013
STATUS

editing

proposed

#5 by Michel Marcus at Wed Nov 06 12:39:53 EST 2013
NAME

Numbers k such that continued fraction of (1+Sqrt[k])/2 has period 17.

EXAMPLE

a(1) = 521 because continued fraction of (1+Sqrt[521])/2 = 11, 1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21, 1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21, 1, 10, 2, 5, ... has period (1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21) length 17.

has period (1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21) length 17

STATUS

approved

editing

#4 by Russ Cox at Sat Mar 31 10:22:14 EDT 2012
AUTHOR

_Artur Jasinski (grafix(AT)csl.pl), _, Oct 30 2008

Discussion
Sat Mar 31
10:22
OEIS Server: https://oeis.org/edit/global/339
#3 by Russ Cox at Fri Mar 30 17:39:45 EDT 2012
MAPLE

A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic', 'quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146340 := proc(n) RETURN(A146326(n) = 17) ; end: for n from 2 do if isA146340(n) then printf("%d, \n", n) ; fi; od: [From _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Sep 06 2009]

EXTENSIONS

998 and 1006 removed, sequence extended - _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Sep 06 2009

Discussion
Fri Mar 30
17:39
OEIS Server: https://oeis.org/edit/global/190
#2 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
DATA

521, 617, 709, 998, 10061433, 1597, 2549, 2909, 2965, 3161, 3581, 3821, 4013, 4285, 4649

MAPLE

A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic', 'quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146340 := proc(n) RETURN(A146326(n) = 17) ; end: for n from 2 do if isA146340(n) then printf("%d, \n", n) ; fi; od: [From R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Sep 06 2009]

KEYWORD

more,nonn,new

EXTENSIONS

998 and 1006 removed, sequence extended - R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Sep 06 2009

#1 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

Numbers k such that continued fraction of (1+Sqrt[k])/2 has period 17

DATA

521, 617, 709, 998, 1006

OFFSET

1,1

COMMENTS

For primes in this sequence see A146362.

EXAMPLE

a(1) = 521 because continued fraction of (1+Sqrt[521])/2 = 11, 1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21, 1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21, 1, 10, 2, 5,...

has period (1, 10, 2, 5, 4, 2, 1, 1, 1, 1, 2, 4, 5, 2, 10, 1, 21) length 17

MATHEMATICA

s = 10; aa = {}; Do[k = ContinuedFraction[(1 + Sqrt[n])/2, 1000]; If[Length[k] < 190, AppendTo[aa, 0], m = 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; s = s + 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; AppendTo[aa, m]], {n, 1, 500}]; bb = {}; Do[If[aa[[n]] == 17, AppendTo[bb, n]], {n, 1, Length[aa]}]; bb (*Artur Jasinski*)

KEYWORD

more,nonn

AUTHOR

Artur Jasinski (grafix(AT)csl.pl), Oct 30 2008

STATUS

approved