[go: up one dir, main page]

login
Revision History for A034349 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

newer changes | Showing entries 11-20
Number of binary [ n,8 ] codes without 0 columns.
(history; published version)
#10 by Petros Hadjicostas at Mon Oct 07 13:54:46 EDT 2019
PROG

(Sage) # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):

def A034253col(k, length):

G1 = PSL(k, GF(2))

G2 = PSL(k-1, GF(2))

D1 = G1.cycle_index()

D2 = G2.cycle_index()

f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)

f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)

f = f1 - f2

return f.taylor(x, 0, length).list()

# For instance the Taylor expansion for column k = 8 (current sequence) gives

print(A034253col(8, 30)) #

#9 by Petros Hadjicostas at Mon Oct 07 13:52:19 EDT 2019
LINKS

Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables_4.html">Snk2: Number of the isometry classes of all binary (n,k)-codes without zero-columns</a>. [This is a lower triangular array whose lower triangle contains T(n,See column k). In the papers, the notation S_{nk2} is used=8.]

H. Fripertinger and A. Kerber, <a href="https://doi.org/10.1007/3-540-60114-7_15">Isometry classes of indecomposable linear codes</a>. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{nk2} = T(n,k)8,2}.]

Petros Hadjicostas, <a href="/A034253/a034253.txt">Generating function for column k = 4</a>. [Cf. A034345.]

Petros Hadjicostas, <a href="/A034253/a034253_1.txt">Generating function for column k = 5</a>. [Cf. A034346.]

Petros Hadjicostas, <a href="/A034253/a034253_2.txt">Generating function for column k = 6</a>. [Cf. A034347.]

#8 by Petros Hadjicostas at Mon Oct 07 13:51:22 EDT 2019
REFERENCES

H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.

LINKS

H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>

#7 by Petros Hadjicostas at Mon Oct 07 13:50:39 EDT 2019
LINKS

Discrete algorithms at the University of Bayreuth, <a href="http://www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/">Symmetrica</a>.

Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>.

Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables_4.html">Snk2: Number of the isometry classes of all binary (n,k)-codes without zero-columns</a>. [This is a lower triangular array whose lower triangle contains T(n,k). In the papers, the notation S_{nk2} is used.]

H. Fripertinger and A. Kerber, <a href="https://doi.org/10.1007/3-540-60114-7_15">Isometry classes of indecomposable linear codes</a>. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here S_{nk2} = T(n,k).]

Petros Hadjicostas, <a href="/A034253/a034253.txt">Generating function for column k = 4</a>. [Cf. A034345.]

Petros Hadjicostas, <a href="/A034253/a034253_1.txt">Generating function for column k = 5</a>. [Cf. A034346.]

Petros Hadjicostas, <a href="/A034253/a034253_2.txt">Generating function for column k = 6</a>. [Cf. A034347.]

Petr Lisonek, <a href="https://doi.org/10.1016/j.jcta.2006.06.013">Combinatorial families enumerated by quasi-polynomials</a>, J. Combin. Theory Ser. A 114(4) (2007), 619-630. [See Section 5.]

David Slepian, <a href="https://archive.org/details/bstj39-5-1219">Some further theory of group codes</a>, Bell System Tech. J. 39(5) (1960), 1219-1252.

David Slepian, <a href="https://doi.org/10.1002/j.1538-7305.1960.tb03958.x">Some further theory of group codes</a>, Bell System Tech. J. 39(5) (1960), 1219-1252.

Wikipedia, <a href="https://en.wikipedia.org/wiki/Cycle_index">Cycle index</a>.

Wikipedia, <a href="https://en.wikipedia.org/wiki/Projective_linear_group">Projective linear group</a>.

#6 by Petros Hadjicostas at Mon Oct 07 13:50:04 EDT 2019
CROSSREFS

Column k=8 of A034253.

STATUS

approved

editing

#5 by Russ Cox at Fri Mar 30 16:47:28 EDT 2012
AUTHOR

_N. J. A. Sloane (njas(AT)research.att.com)_.

Discussion
Fri Mar 30
16:47
OEIS Server: https://oeis.org/edit/global/110
#4 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
KEYWORD

nonn,new

nonn

AUTHOR

N. J. A. Sloane (njas(AT)research.att.com).

#3 by N. J. A. Sloane at Sat Jun 12 03:00:00 EDT 2004
NAME

Binary Number of binary [ n,8 ] codes without 0 columns.

KEYWORD

nonn,new

nonn

#2 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
LINKS

H. Fripertinger, <a href="http://bedvgmwww.kfunigrazmathe2.acuni-bayreuth.at:8001de/frib/codes/tables.html">Web siteIsometry Classes of Codes</a>

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Sat Dec 11 03:00:00 EST 1999
NAME

Binary [ n,8 ] codes without 0 columns.

DATA

0, 0, 0, 0, 0, 0, 0, 1, 8, 47, 277, 1775, 12616, 102445, 957357, 10174566, 119235347, 1482297912, 18884450721, 240477821389, 3012879828566, 36800049400028, 436068618826236, 5001537857507095, 55482177298724426

OFFSET

1,9

REFERENCES

H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.

LINKS

<a href="http://bedvgm.kfunigraz.ac.at:8001/frib/codes/tables.html">Web site</a>

CROSSREFS

Cf. A034253, A034344-.

KEYWORD

nonn

AUTHOR

njas

STATUS

approved