[go: up one dir, main page]

login
A373377 revision #2

A373377
a(n) = gcd(A059975(n), A083345(n)), where A059975 is fully additive with a(p) = p-1, and A083345 is the numerator of the fully additive function with a(p) = 1/p.
4
0, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 6, 2, 1, 1, 1, 2, 1, 1, 8, 1, 1, 1, 5, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 12, 1, 1, 1, 1, 2, 9, 2, 14, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 18, 2, 1, 1, 1, 1, 1, 1, 20, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 24, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,8
PROG
(PARI)
A059975(n) = { my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A373377(n) = gcd(A059975(n), A083345(n));
CROSSREFS
Cf. A369002 (positions of even terms), A369003 (of odd terms).
Sequence in context: A197027 A143772 A373366 * A053989 A342459 A057160
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2024
STATUS
editing