[go: up one dir, main page]

login
A368039 revision #5

A368039
The product of exponents of prime factorization of the nonsquarefree numbers.
5
2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 4, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 6, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 4, 3, 6, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 8, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 4, 3, 2, 3, 6, 4, 2, 6, 2, 2, 4, 2, 9, 2, 5, 4, 2
OFFSET
1,1
COMMENTS
The terms of A005361 that are larger than 1, since A005361(k) = 1 if and only if k is squarefree (A005117).
FORMULA
a(n) = A005361(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = ((zeta(2)*zeta(3)/zeta(6)) - 1/zeta(2))/(1-1/zeta(2)) = (A082695 - A059956)/A229099 = 3.406686208821... .
MATHEMATICA
Select[Table[Times @@ FactorInteger[n][[;; , 2]], {n, 1, 250}], # > 1 &]
PROG
(PARI) lista(kmax) = {my(p); for(k = 1, kmax, p = vecprod(factor(k)[, 2]); if(p > 1, print1(p, ", "))); }
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 09 2023
STATUS
reviewed