[go: up one dir, main page]

login
A352225 revision #33

A352225
Second numbers F = a(n) of two non-consecutive numbers (E, F) different from (C, D) = (A352222(n), A352223(n)), such that the sums of their cubes are equal to centered cube numbers and to at least one other sum of two cubes, i.e. A = B^3 + (B+1)^3 = C^3 + D^3 = E^3 + F^3.
17
-360, -197, -362, -2805, -3866, -10081, -29511, -5905, -227790, -10012, -24548, -28995, -875133, -73040, -615709, -457027, -3044074, -17549681, -4232837, -4999714, -13724102460, -94822721073
OFFSET
1,1
COMMENTS
Numbers F such that A = B^3 + (B+1)^3 = C^3 + D^3 = E^3 + F^3 with C <> (D +- 1), E <> (F +- 1), E > C > B, C > |D| and E > |F|, where A = A352220(n), B = A352221(n), C = A352222(n), D = A352223(n), E = A352224(n) and F = a(n) (this sequence).
Terms are ordered according to increasing order of A352220(n) or A352221(n).
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Eric Weisstein's World of Mathematics, Centered Cube Number
FORMULA
A352224(n)^3 + a(n)^3 = A352221(n)^3 + (A352221(n) + 1)^3 = A352222(n)^3 + A352223(n)^3 = A352220(n).
EXAMPLE
-360 belongs to the sequence as 369^3 + (-360)^3 = 121^3 + 122^3 = 153^3 + 18^3 = 3587409.
KEYWORD
sign,more
AUTHOR
Vladimir Pletser, Mar 07 2022
EXTENSIONS
a(21) from Chai Wah Wu, Mar 17 2022
a(22) from Bert Dobbelaere, Apr 18 2022
STATUS
reviewed