OFFSET
1,2
COMMENTS
Close to the value of e^(3/2)/Pi.
LINKS
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT]], 2010-2015.
FORMULA
Equals Sum_{i > 0} 1/A001481(i)^2.
Equals Product_{i > 0} 1/(1-A055025(i)^-2).
Equals 1/(1-prime(1)^(-2)) / Product_{i>1 and prime(i) == 1 (mod 4)} (1-prime(i)^(-2)) / Product_{i>1 and prime(i) == 3 (mod 4)} (1-prime(i)^(-4)), where prime(n) = A000040(n).
Equals zeta_{2,0} (2) * zeta_{4,1} (2) * zeta_{4,3} (4), where zeta_{4,1} (2) = A175647 and zeta_{2,0} (s) = 2^s/(2^s - 1).
EXAMPLE
1.4265560635125928786968093161550816361276693636770...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
A.H.M. Smeets, May 09 2021
STATUS
editing