[go: up one dir, main page]

login
A344123 revision #10

A344123
Decimal expansion of zeta(2) over the numbers that can be written as the sum of two squares, i.e., A001481.
3
1, 4, 2, 6, 5, 5, 6, 0, 6, 3, 5, 1, 2, 5, 9, 2, 8, 7, 8, 6, 9, 6, 8, 0, 9, 3, 1, 6, 1, 5, 5, 0, 8, 1, 6, 3, 6, 1, 2, 7, 6, 6, 9, 3, 6, 3, 6, 7, 7, 0, 3, 9, 0, 2, 8, 8, 7, 9, 9, 2, 2, 3, 0, 4, 4, 1, 2, 9, 6, 0, 4, 5, 2, 8, 6, 1, 5, 1, 9, 0, 1, 9, 1, 4, 6, 7
OFFSET
1,2
COMMENTS
Close to the value of e^(3/2)/Pi.
FORMULA
Equals Sum_{i > 0} 1/A001481(i)^2.
Equals Product_{i > 0} 1/(1-A055025(i)^-2).
Equals 1/(1-prime(1)^(-2)) / Product_{i>1 and prime(i) == 1 (mod 4)} (1-prime(i)^(-2)) / Product_{i>1 and prime(i) == 3 (mod 4)} (1-prime(i)^(-4)), where prime(n) = A000040(n).
Equals 4/3/A243379/A334448.
Equals zeta_{2,0} (2) * zeta_{4,1} (2) * zeta_{4,3} (4), where zeta_{4,1} (2) = A175647 and zeta_{2,0} (s) = 2^s/(2^s - 1).
EXAMPLE
1.4265560635125928786968093161550816361276693636770...
KEYWORD
nonn,cons
AUTHOR
A.H.M. Smeets, May 09 2021
STATUS
editing