[go: up one dir, main page]

login
A342323 revision #12

A342323
Square array read by ascending antidiagonals: T(n,k) = gcd(k, Phi_k(n)), where Phi_k is the k-th cyclotomic polynomial, n >= 0, k >= 1.
2
1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 5, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1
OFFSET
0,5
COMMENTS
This is the same table as A342255 but with offset 0. Therefore, the resulting sequences as flattened tables are different. The main entry is A342255.
LINKS
Jianing Song, Table of n, a(n) for n = 0..5049 (the first 100 antidiagonals)
FORMULA
For k > 1, let p be the largest prime factor of k, then T(n,k) = p if p does not divide n and k = p^e*ord(p,n) for some e > 0, where ord(p,n) is the multiplicative order of n modulo p.
EXAMPLE
Table begins
n\k | 1 2 3 4 5 6 7 8 9 10 11 12
------------------------------------------
0 | 1 1 1 1 1 1 1 1 1 1 1 1
1 | 1 2 3 2 5 1 7 2 3 1 11 1
2 | 1 1 1 1 1 3 1 1 1 1 1 1
3 | 1 2 1 2 1 1 1 2 1 1 1 1
4 | 1 1 3 1 1 1 1 1 3 5 1 1
5 | 1 2 1 2 1 3 1 2 1 1 1 1
6 | 1 1 1 1 5 1 1 1 1 1 1 1
7 | 1 2 3 2 1 1 1 2 3 1 1 1
8 | 1 1 1 1 1 3 7 1 1 1 1 1
9 | 1 2 1 2 1 1 1 2 1 5 1 1
10 | 1 1 3 1 1 1 1 1 3 1 1 1
11 | 1 2 1 2 5 3 1 2 1 1 1 1
12 | 1 1 1 1 1 1 1 1 1 1 11 1
PROG
(PARI) T(n, k) = gcd(k, polcyclo(k, n))
CROSSREFS
Cf. A342255.
Sequence in context: A357138 A357180 A196660 * A374433 A135222 A285706
KEYWORD
nonn,easy,tabl
AUTHOR
Jianing Song, Mar 08 2021
STATUS
reviewed