[go: up one dir, main page]

login
A336297 revision #15

A336297
Prime numbers p such that equation x = p*sopf(x) (where sopf(x) is the sum of distinct prime factors of x) has exactly 1 solution in positive integers.
3
2, 61, 97, 113, 151, 173, 241, 277, 317, 353, 389, 449, 457, 593, 601, 607, 653, 673, 683, 727, 733, 797, 907, 929, 941, 947, 953, 977, 997, 1021, 1051, 1087, 1153, 1181, 1193, 1217, 1249, 1307, 1321, 1361, 1373, 1409, 1433, 1489, 1493, 1523, 1553, 1579, 1597, 1609, 1627
OFFSET
1,1
EXAMPLE
4 is the unique integer x such that x = 2*sopf(x), a prime, so 2 is a term.
PROG
(PARI) sopf(n) = vecsum(factor(n)[, 1]); \\ A008472
pp(n) = prod(k=1, n, prime(k)); \\ A002110
sp(n) = sum(k=1, n, prime(k)); \\ A007504
ip(n) = {my(k=1); while (pp(k)/sp(k) <= n, k++); k+1; }
lista(nn) = {my(lim = pp(ip(nn))); my(v = vector(lim, k, k++; k/sopf(k))); my(w = select(x->myisprime(x), v)); select(x->(x<=nn), apply(x->prime(x), Vec(select(x->(x==1), vector(nn-1, k, #select(x->(x==prime(k)), w)), 1)))); } \\ Michel Marcus, Jul 19 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Letsko, Jul 16 2020
STATUS
proposed