[go: up one dir, main page]

login
A322093 revision #29

A322093
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k with no element equal to another within a distance of 1.
13
1, 2, 0, 6, 2, 0, 24, 30, 2, 0, 120, 864, 174, 2, 0, 720, 39480, 41304, 1092, 2, 0, 5040, 2631600, 19606320, 2265024, 7188, 2, 0, 40320, 241133760, 16438575600, 11804626080, 134631576, 48852, 2, 0, 362880, 29083420800, 22278418248240, 131402141197200, 7946203275000, 8437796016, 339720, 2, 0
OFFSET
1,2
LINKS
FORMULA
A(n,k) = k! * A322013(n,k).
Let q_n(x) = Sum_{i=1..n} (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!.
A(n,k) = Integral_{0..infinity} (q_n(x))^k * exp(-x) dx.
EXAMPLE
Square array begins:
1, 2, 6, 24, 120, 720, ...
0, 2, 30, 864, 39480, 2631600, ...
0, 2, 174, 41304, 19606320, 16438575600, ...
0, 2, 1092, 2265024, 11804626080, 131402141197200, ...
0, 2, 7188, 134631576, 7946203275000, 1210527140790855600, ...
CROSSREFS
Columns k=3 gives A110706.
Main diagonal gives A321634.
Cf. A322013.
Sequence in context: A095832 A248162 A143381 * A277681 A140876 A243997
KEYWORD
nonn,tabl,changed
AUTHOR
Seiichi Manyama, Nov 26 2018
STATUS
proposed