[go: up one dir, main page]

login
A302654 revision #4

A302654
Number of minimum total dominating sets in the n-path graph.
4
0, 1, 2, 1, 1, 4, 3, 1, 2, 9, 4, 1, 3, 16, 5, 1, 4, 25, 6, 1, 5, 36, 7, 1, 6, 49, 8, 1, 7, 64, 9, 1, 8, 81, 10, 1, 9, 100, 11, 1, 10, 121, 12, 1, 11, 144, 13, 1, 12, 169, 14, 1, 13, 196, 15, 1, 14, 225, 16, 1, 15, 256, 17, 1, 16, 289, 18, 1, 17, 324, 19, 1, 18, 361, 20, 1
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Path Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1).
FORMULA
a(n) = ((-1)^n*(n - 2)^2 + (6 + n)^2 - 2*(n - 2)*(n + 6)*cos(n*Pi/2) - 48*sin(n*Pi/2))/6.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
MATHEMATICA
Table[Piecewise[{{1, Mod[n, 4] == 0}, {((n + 2)/4)^2, Mod[n, 4] == 2}, {(n - 1)/4, Mod[n, 4] == 1}, {(n + 5)/4, Mod[n, 4] == 3}}], {n, 20}]
Table[((-1)^n (n - 2)^2 + (6 + n)^2 - 2 (n - 2) (n + 6) Cos[n Pi/2] - 48 Sin[n Pi/2])/64, {n, 20}]
LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {0, 1, 2, 1, 1, 4, 3, 1, 2, 9, 4, 1}, 20]
CROSSREFS
Sequence in context: A370005 A294082 A129705 * A264831 A264728 A306790
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 11 2018
STATUS
approved