OFFSET
0,1
COMMENTS
Fold a rectangular sheet of paper in half (fold lower half up), and again into half (left half to the right), and again (lower half up), and again (left half to the right)... making n folds in all. Cut along the diagonal line from top left to bottom right of the resulting small rectangle. Sequence gives the number of pieces that are formed.
The even-numbered entries of this sequence are A343175 (essentially A085601). The odd numbered entries are A343176 (essentially A036562). [These bisections are easy to analyze and have simpler formulas. - N. J. A. Sloane, Apr 26 2021]
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,0,-6,4).
FORMULA
a(n) = (2^n+2^(n/2)*(1+(-1)^n+3*sqrt(2)*(1-(-1)^n)/4)+2)/2 for n>1. (Johan Nilsson)
a(0) = 2, a(1) = 3, a(n+1) = 2*a(n)-2^(floor((n-1)/2))-1.
G.f.: -(2*x^5-x^4+5*x^3-4*x^2-3*x+2)/((x-1)*(2*x-1)*(2*x^2-1)). - Alois P. Heinz, Apr 23 2015
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4) for n>5. - Colin Barker, Feb 05 2020
E.g.f.: (1/4)*(-2 - 2*x + 2*cosh(2*x) + 4*cosh(sqrt(2)*x) + 4*sinh(x) + 4*cosh(x)*(1 + sinh(x)) + 3*sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, Feb 05 2020
EXAMPLE
n=1: Take a rectangular sheet of paper and fold it in half. Cutting along the diagonal of the resulting rectangle yields 3 smaller pieces of paper.
n=0: Cutting the sheet of paper (without any folding) along the diagonal yields two pieces.
MAPLE
2, seq(floor((2^n+2^(n/2)*(1+(-1)^n+3*sqrt(2)*(1-(-1)^n)/4)+2)/2), n=1..25);
MATHEMATICA
Table[Floor[(2^n + 2^(n/2)*(1 + (-1)^n + 3 Sqrt[2]*(1 - (-1)^n)/4) + 2)/2], {n, 0, 25}] (* Michael De Vlieger, Apr 24 2015 *)
PROG
(PARI) concat(2, vector(30, n, round((2^n+2^(n/2)*(1+(-1)^n+3*sqrt(2)*(1-(-1)^n)/4)+2)/2))) \\ Derek Orr, Apr 27 2015
(PARI) Vec((2 - 3*x - 4*x^2 + 5*x^3 - x^4 + 2*x^5) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)) + O(x^35)) \\ Colin Barker, Feb 05 2020
(MAGMA) [2, 3, 5, 8] cat [Floor((2^n+2^(n/2)*(1+(-1)^n+3*Sqrt(2)*(1-(-1)^n)/4)+2)/2):n in [4..40]]; // Vincenzo Librandi, May 05 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Dirk Frettlöh, Apr 22 2015
STATUS
approved