OFFSET
1,1
FORMULA
Equals Integral_{x>0} log(x)^2/(1+x^2) dx.
Equals Integral_{x=0..Pi/2} log(tan(x))^2 dx.
Equals Integral_{x=0..Pi/2} log(sin(x)^3)*log(sin(x))-(3*Pi/2)*log(2)^2 dx.
Equals 27/7 * sum_{k>=0} (binomial(2*k, k)/((2*k+1)^3*16^k);
Equals 27/7 * 4F3([1/2, 1/2, 1/2, 1/2], [3/2, 3/2, 3/2], 1/4), where pFq() is the generalized hypergeometric function.
From Amiram Eldar, Aug 21 2020: (Start)
Equals Integral_{x=0..oo} x^2/cosh(x) dx.
Equals 2 + Integral_{x=0..oo} x^2 * exp(-x) * tanh(x) dx. (End)
From Gleb Koloskov, Jun 15 2021: (Start)
Equals 2*Integral_{x=0..1} log(x)^2/(1+x^2) dx.
Equals 2*Integral_{x=1..oo} log(x)^2/(1+x^2) dx.
Equals 2*(-1)^n*Integral_{x=-1/e..0} W(n,x)*(1-W(n,x))*log(-W(n,x))^2/x/(1-W(n,x)^4) dx, where W=LambertW, for n=0 and n=-1. (End)
EXAMPLE
3.875784585037477521934539383387674400278161070735638461768067262975799364683...
MATHEMATICA
RealDigits[Pi^3/8, 10, 100][[1]]
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Apr 24 2013
EXTENSIONS
Offset corrected by Rick L. Shepherd, Jan 01 2014
STATUS
reviewed